【MATLAB】语音信号识别与处理:小波去噪滤波算法去噪及谱相减算法呈现频谱

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 【MATLAB】语音信号识别与处理:小波去噪滤波算法去噪及谱相减算法呈现频谱


1 基本定义

小波去噪滤波算法是一种基于小波变换的滤波方法,它通过对信号进行小波变换来分解信号的频率分量,并根据信号的特点选择合适的阈值处理方法来去除噪声。该算法的主要思想是将信号分解成多个频率分量,根据信号的特点选择合适的阈值处理方法对每个频率分量进行去噪处理,然后将去噪后的频率分量进行合成,得到平滑后的信号。 具体来说,小波去噪滤波算法的步骤如下:

  1. 对信号进行小波分解,得到多个频率分量。
  2. 对每个频率分量进行阈值处理,去除噪声。
  3. 将去噪后的频率分量进行合成,得到平滑后的信号。小波去噪滤波算法的优点是可以有效地去除噪声,同时保留信号的整体趋势;缺点是需要选择合适的小波基和阈值处理方法,否则可能会影响滤波的效果。另外,小波去噪滤波算法对于信号中存在的快速变化的特征可以得到很好的保留,因此在一些需要保留信号快速变化特征的应用场景中,小波去噪滤波算法得到了广泛的应用。

谱相减算法呈现频谱:谱相减算法是一种音频降噪方法,通过将原始频谱与估计的噪声频谱进行相减,得到清晰的音频信号。该算法通常在频域进行操作,对频谱进行减法运算,并对结果进行逆变换以获得时间域的清晰信号。

2 定义和出图效果

附出图效果如下:

附视频教程操作:

【MATLAB】语音信号识别与处理:小波去噪滤波算法去噪及谱相减算法呈现频谱

https://mbd.pub/o/bread/ZZublp1s

【MATLAB】语音信号识别与处理:史上最全的 9 种滤波算法去噪及谱相减算法呈现频谱

https://mbd.pub/o/bread/ZZublp1v

MATLAB 228 种科研算法及 23 期科研绘图合集

https://pan.baidu.com/s/186kMN0d3dQN2K6KprNhwGQ?pwd=6666

提取码:6666

关于代码有任何疑问,均可关注公众号(Lwcah)后,后台回复关键词:微信号。

获取 up 的个人微信号,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


目录
相关文章
|
12天前
|
机器学习/深度学习 数据采集 算法
【信号识别】识别半监督粗糙模糊拉普拉斯特征图(Matlab代码实现)
【信号识别】识别半监督粗糙模糊拉普拉斯特征图(Matlab代码实现)
|
28天前
|
安全 算法 自动驾驶
使用SSTL规范控制信号化交叉口研究(Matlab代码实现)
使用SSTL规范控制信号化交叉口研究(Matlab代码实现)
|
12天前
|
机器学习/深度学习 算法 语音技术
【语音分离】通过分析信号的FFT,根据音频使用合适的滤波器进行语音信号分离(Matlab代码实现)
【语音分离】通过分析信号的FFT,根据音频使用合适的滤波器进行语音信号分离(Matlab代码实现)
|
25天前
|
算法 Python
【国防科大硕士论文】V调频信号脉冲压缩+V-FM ISAR成像研究(Matlab代码实现)
【国防科大硕士论文】V调频信号脉冲压缩+V-FM ISAR成像研究(Matlab代码实现)
|
1月前
|
编解码 资源调度 算法
【信号处理】时序数据中的稀疏辅助信号去噪和模式识别(Matlab代码实现)
【信号处理】时序数据中的稀疏辅助信号去噪和模式识别(Matlab代码实现)
|
12天前
|
数据格式
表面肌电信号(sEMG)完整处理流程 MATLAB
表面肌电信号(sEMG)完整处理流程 MATLAB
|
1月前
|
机器学习/深度学习 编解码 算法
对三种雷达信号调制类型的识别及MATLAB实现
对三种雷达信号调制类型的识别及MATLAB实现
|
7天前
|
传感器 算法 安全
基于分布式模型预测控制DMPC的单向拓扑结构下异构车辆车队研究(Matlab代码实现)
基于分布式模型预测控制DMPC的单向拓扑结构下异构车辆车队研究(Matlab代码实现)
|
6天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
6天前
|
机器学习/深度学习 并行计算 算法
基于二进制粒子群优化(BPSO)最佳PMU位置(OPP)配置研究(Matlab代码实现)
基于二进制粒子群优化(BPSO)最佳PMU位置(OPP)配置研究(Matlab代码实现)