力扣面试经典题之数组/字符串(二)

简介: 力扣面试经典题之数组/字符串(二)

189. 轮转数组

中等

给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。

示例 1:

输入: nums = [1,2,3,4,5,6,7], k = 3

输出: [5,6,7,1,2,3,4]

解释:

向右轮转 1 步: [7,1,2,3,4,5,6]

向右轮转 2 步: [6,7,1,2,3,4,5]

向右轮转 3 步: [5,6,7,1,2,3,4]

示例 2:

输入:nums = [-1,-100,3,99], k = 2

输出:[3,99,-1,-100]

解释:

向右轮转 1 步: [99,-1,-100,3]

向右轮转 2 步: [3,99,-1,-100]

提示:

  • 1 <= nums.length <= 105
  • -231 <= nums[i] <= 231 - 1
  • 0 <= k <= 105
void rotate(int* nums, int numsSize, int k) {
    k=k%numsSize;
    if(k==0){
        return;
    }
    int a[k],j=0;
    for(int i=numsSize-k;i<numsSize;i++){
        a[j++]=nums[i];
    }
    for(int i=numsSize-k-1;i>=0;i--){
       nums[i+k]=nums[i];
    }
    for(int i=0;i<k;i++){
        nums[i]=a[i];
    }
}

121. 买卖股票的最佳时机

简单

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0

示例 1:

输入:[7,1,5,3,6,4]

输出:5

解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。

    注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。


示例 2:

输入:prices = [7,6,4,3,1]

输出:0

解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

  • 1 <= prices.length <= 105
  • 0 <= prices[i] <= 104
int maxProfit(int* prices, int pricesSize) {
    int min=99999,max=0;
    for(int i=0;i<pricesSize;i++){
        if(prices[i]>min&&max<(prices[i]-min)){
               max=prices[i]-min;
        }
        if(prices[i]<min){
            min=prices[i];
        }
    }
    return max;
   
}

122. 买卖股票的最佳时机 II

中等

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润

示例 1:

输入:prices = [7,1,5,3,6,4]

输出:7

解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。

    随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。

    总利润为 4 + 3 = 7 。

示例 2:

输入:prices = [1,2,3,4,5]

输出:4

解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。

    总利润为 4 。

示例 3:

输入:prices = [7,6,4,3,1]

输出:0

解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。

提示:

  • 1 <= prices.length <= 3 * 104
  • 0 <= prices[i] <= 104
int maxProfit(int* prices, int pricesSize) {
    int max=0;
    for(int i=0;i<pricesSize-1;i++){
          if(prices[i]<prices[i+1]){
            max=max+(prices[i+1]-prices[i]);
          }
    }
    return max;
}

55. 跳跃游戏

中等

给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false

示例 1:

输入:nums = [2,3,1,1,4]

输出:true

解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。


示例 2:

输入:nums = [3,2,1,0,4]

输出:false

解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。


提示:

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 105
bool canJump(int* nums, int numsSize) {
    int a[10000]={0};
    a[numsSize-1]=1;
    for(int i=numsSize-2;i>=0;i--){
        for(int j=i+1;j<numsSize&&j<=i+nums[i];j++){
             if(a[j]==1){
                 a[i]=1;
                 break;
             }
        }
    }
    if(a[0]==1){
        return true;
    }
    return false;
}

45. 跳跃游戏 II

中等

给定一个长度为 n0 索引整数数组 nums。初始位置为 nums[0]

每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

  • 0 <= j <= nums[i]
  • i + j < n

返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]

示例 1:

输入: nums = [2,3,1,1,4]

输出: 2

解释: 跳到最后一个位置的最小跳跃数是 2。

    从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。


示例 2:

输入: nums = [2,3,0,1,4]

输出: 2


提示:

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 1000
  • 题目保证可以到达 nums[n-1]
int jump(int* nums, int numsSize){
   int *dp=(int *)malloc(sizeof(int)*numsSize);
   dp[0]=0;
   for(int i = 1 ; i < numsSize ; i++ )
    {
        dp[i] =  numsSize + 1;
    }
   for(int i =1; i< numsSize; i++)
    {
        for(int j = 0; j < i; j++)
        {
            if(j + nums[j] >= i)
            {
                dp[i] = fmin(dp[i],dp[j]+1);
            }
        }
    }
   return dp[numsSize-1];
}
目录
相关文章
|
5月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
162 1
|
7月前
|
Go 索引
【LeetCode 热题100】394:字符串解码(详细解析)(Go语言版)
本文详细解析了 LeetCode 热题 394:字符串解码。题目要求对编码字符串如 `k[encoded_string]` 进行解码,其中 `encoded_string` 需重复 `k` 次。文章提供了两种解法:使用栈模拟和递归 DFS,并附有 Go 语言实现代码。栈解法通过数字栈与字符串栈记录状态,适合迭代;递归解法则利用函数调用处理嵌套结构,代码更简洁。两者时间复杂度均为 O(n),但递归需注意栈深度问题。文章还总结了解题注意事项及适用场景,帮助读者更好地掌握字符串嵌套解析技巧。
174 6
|
8月前
|
存储 机器学习/深度学习 缓存
🚀 力扣热题 394:字符串解码(详细解析)(Go语言版)
文章提供了两种解法:栈结构和递归解法。栈解法通过维护数字栈与字符串栈,依次处理 `[` 和 `]`,构造解码结果;递归解法则利用函数调用逐层解析嵌套结构。两者时间复杂度均为 $O(n)$,空间复杂度也为 $O(n)$。栈解法直观易懂,适合初学者;递归解法优雅简洁,适合处理深度嵌套规则。掌握这两种方法,可灵活应对类似问题,提升解题能力。
232 11
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
120 0
|
JavaScript
力扣3333.找到初始输入字符串Ⅱ
【10月更文挑战第9天】力扣3333.找到初始输入字符串Ⅱ
128 1
|
C++
Leetcode第43题(字符串相乘)
本篇介绍了一种用C++实现的字符串表示的非负整数相乘的方法,通过逆向编号字符串,将乘法运算转化为二维数组的累加过程,最后处理进位并转换为字符串结果,解决了两个大数相乘的问题。
97 9
【LeetCode-每日一题】 删除排序数组中的重复项
【LeetCode-每日一题】 删除排序数组中的重复项
95 4
|
索引
Leetcode第三十三题(搜索旋转排序数组)
这篇文章介绍了解决LeetCode第33题“搜索旋转排序数组”的方法,该问题要求在旋转过的升序数组中找到给定目标值的索引,如果存在则返回索引,否则返回-1,文章提供了一个时间复杂度为O(logn)的二分搜索算法实现。
104 0
Leetcode第三十三题(搜索旋转排序数组)
|
算法 C++
Leetcode第53题(最大子数组和)
这篇文章介绍了LeetCode第53题“最大子数组和”的动态规划解法,提供了详细的状态转移方程和C++代码实现,并讨论了其他算法如贪心、分治、改进动态规划和分块累计法。
199 0
|
算法 C++
Leetcode第八题(字符串转换整数(atoi))
这篇文章介绍了LeetCode上第8题“字符串转换整数(atoi)”的解题思路和C++的实现方法,包括处理前导空格、正负号、连续数字字符以及整数溢出的情况。
146 0

热门文章

最新文章

下一篇
开通oss服务