python学习1补充

简介: python学习1补充

代码1


grouped=df.groupby('单品编码')
result={}

grouped=df.groupby('单品编码')是对名为df的数据框按照列名为’单品编码’进行分组操作。这将返回一个GroupBy对象,该对象可以用于按照分组对数据进行聚合操作。


然后,result={}是创建一个空字典对象。


代码2


for name, group in grouped
    unique_months=group['月份'].unique()
    total_months=len(unique_months)
    season=[]
    season_list=[0]*4
    if 3 in unique_months or 4 in unique_months or 5 in unique_months:
        season.append("春季")
        season_list[0]=1
    if 6 in unique_months or 7 in unique_months or 8 in unique_months:
        season.append("夏季")
        season_list[1] = 1
    if 9 in unique_months or 10 in unique_months or 11 in unique_months:
        season.append("秋季")
        season_list[2] = 1
    if 12 in unique_months or 1 in unique_months or 2 in unique_months:
        season.append("冬季")
        season_list[3] = 1
    result[name]={
        '出现的月份':unique_months,
        '总共出现的月份数':total_months,
        '出现的季节':season,
        "季节数":len(season),
        "季节列表":season_list
    }


这段代码是对`GroupBy`对象进行迭代,并针对每个分组进行操作,最终生成一个结果字典`result`,记录了每个分组的统计信息。


对于每个分组,首先通过`group['月份'].unique()`获取该分组下的"月份"列中的唯一值,并将其存储在`unique_months`中。接着,使用`len()`函数计算`unique_months`的长度,即该分组出现的不同月份总数,并将其存储在`total_months`中。


为了确定该分组出现的季节信息,定义了一个空的列表`season`和一个包含4个零元素的列表`season_list`。然后,通过判断`unique_months`中是否包含特定月份,来确定季节的出现情况。如果`unique_months`中出现了3、4或5月份,则将"春季"添加到`season`列表中,并将`season_list[0]`置为1。同样,对其他月份进行判断,分别将"夏季"、"秋季"和"冬季"添加到`season`列表中,并将相应的`season_list`元素置为1。


最后,将该分组的名称作为`result`字典的键,对应的结果作为值存储起来。结果字典的值包括:'出现的月份'、'总共出现的月份数'、'出现的季节'、'季节数'以及'季节列表'。这样,在每次迭代结束后,`result`字典就会记录了每个分组的统计信息。


通过这段代码,您可以获取每个分组出现的月份、总共出现的月份数以及该分组所处的季节信息,并将这些统计信息存储在结果字典中,以便后续分析和使用。


当对一个`GroupBy`对象进行迭代时,会返回一个由元组`(name, group)`组成的迭代器。其中,`name`表示分组的名称,`group`表示相应的分组数据。


具体迭代的过程如下:


1. 首先,根据指定的列对数据进行分组,生成`GroupBy`对象 `grouped`。


2. 使用`for name, group in grouped`语法,开始对`grouped`进行迭代。在每次迭代中,会将一个分组的名称赋值给`name`,将该分组的数据赋值给`group`。


3. 在每个迭代中,你可以通过`name`获取当前分组的唯一标识,可以通过`group`来进行该分组内的其他操作和处理。


4. 继续迭代,直到遍历完所有的分组。


总的来说,这个迭代过程允许您逐个访问每个分组,并对每个分组进行操作和分析,比如计算统计量、应用函数等。您可以根据实际需求在每次迭代中进行适当的处理。


输出结果:


代码3


count_all=0
count_all_list = []
for key, value in result.items():
    if value['季节数']==4:
        count_all+=1
        count_all_list.append(key)
    print(count_all)
        print(count_all_list)


result.items() 返回一个字典中的所有键值对。这个方法把字典中的每一个键值对都转化为(键, 值)的元组,然后把这些元组放到一个迭代器中。


这段代码是在result字典中针对每个键值对进行操作,并统计符合条件的键值对的数量。


首先,定义了一个变量count_all和一个列表count_all_list。count_all记录包含4个季节的所有分组的数量,count_all_list记录符合条件的分组的名称。


然后,使用for key, value in result.items()语法,开始从result字典中逐个取出键和值,进行循环操作。在循环中,使用if value['季节数']==4的语法来判断当前字典的季节数是否为4,如果是,就将该分组的名称添加到count_all_list中,并将count_all自增1。


最后,通过print(count_all)和print(count_all_list)语句,将符合条件的分组数量和分组名称输出。


输出如下:


代码4


df['年份']=df['日期'].dt.year
result=df.groupby(['单品编码','年份']).agg({'日期':'nunique'}).reset_index()
result.rename(columns={'日期':'天数'},inplace=True)


第一行就不介绍了,在python学习1-CSDN博客中已经介绍过


接下来,使用 `df.groupby(['单品编码','年份'])` 对数据框 `df` 进行分组操作,按照 '单品编码' 和 '年份' 进行分组。然后,通过 `.agg({'日期':'nunique'})` 对分组后的每个组进行聚合操作,对 '日期' 列应用 `nunique()` 函数,计算每个组中独特日期值的数量。这样,结果数据框 `result` 将包含 '单品编码'、'年份' 和 '日期'(记为 '天数')三个列。


最后,通过 `.reset_index()` 重置 `result` 数据框的索引,将多级索引还原为默认的整数索引。然后使用 `.rename(columns={'日期':'天数'}, inplace=True)` 的方式,将 '日期' 列的名称改为 '天数'。这样,`result` 数据框就得到了最终的结果。


通过以上的操作,您可以得到按照 '单品编码' 和 '年份' 进行分组的数据框 `result`,其中记录了每个组中独特日期值的数量。这个结果可以帮助您进行进一步的数据分析和处理。


.agg() 是 pandas 库用于分组数据计算的方法,其可以用于对 DF 或者 Series 数据进行一些分组操作,并对分组后的数据进行需要的一些聚合处理。其中,{'日期':'nunique'} 这个参数是 .agg() 中最重要的一部分。


{'日期':'nunique'} 表示对于 ‘日期’ 这一列的数据,应用 nunique() 函数进行聚合,具体含义是,分组后统计每个组(例如每个商品以及每个年份)中独特日期值的数量,即去重后的独特日期值的数量。


nunique() 函数用于计算一列数据中除去重复值之外的独特(唯一)值的数量,其语法格式为:Series.nunique(dropna=True),其中:


  • Series 为要统计独特值的数据列;
  • dropna 表示是否排除空值,默认为 True,即排除空值。


在上面的代码中,由于分组使用了 ‘单品编码’ 和 ‘年份’ 两个列,所以会对所有在同一年份中的同一种商品进行分组,统计该商品在该年份内销售的天数,最终将结果存储在 ‘天数’ 列中。


代码5


max_days=result.groupby('单品编码')['天数'].max().reset_index()
#print(max_days)
plt.hist(max_days['天数'],bins=35,edgecolor='k')
plt.xlabel('天数')
plt.ylabel('频数')
plt.title('天数分布直方图')
plt.show()
filtered_df=max_days[max_days['天数']<=15]
cnt=0
cnt_list=[]
for index,row in filtered_df.iterrows():
    cnt_list.append(row['单品编码'])
    print(f"单品编码:{row['单品编码']},一年最多出现{row['天数']}天")
    cnt+=1
    print(cnt)


这段代码的作用是,首先通过 `result` 数据框中的 '单品编码' 列和 '天数' 列计算出每个单品在最多的一年内销售的天数,并将结果保存在 `max_days` 数据框中;然后,绘制 `max_days` 数据框中 '天数' 列的频数分布直方图,以便进行天数分布的可视化;最后把最多销售天数小于等于 15 天的单品筛选出来,输出它们在其销售最多一年内的销售天数,并统计筛选出的单品数量。


具体解释如下:


`max_days=result.groupby('单品编码')['天数'].max().reset_index()`: 通过对 `result` 数据框按照 '单品编码' 列进行分组,对每组中的 '天数' 列求出最大值,表示该单品在最多的一年内销售的天数,从而得到结果数据框 `max_days`。


`plt.hist(max_days['天数'],bins=35,edgecolor='k')`: 使用 `plt.hist()` 可视化库,绘制直方图,并将 `max_days` 数据框中的 '天数' 列作为参数传入,以便绘制该列的分布图。`bins=35` 表示直方图的数量为 35,`edgecolor='k'` 表示直方图的边界颜色为黑色。


`plt.xlabel('天数')` 和 `plt.ylabel('频数')`: 分别指定直方图的横轴和纵轴的标签。


`plt.title('天数分布直方图')`: 指定直方图的标题。


`plt.show()`: 显示绘制出来的直方图。


`filtered_df=max_days[max_days['天数']<=15]`: 从 `max_days` 数据框中筛选出在最多销售天数小于等于 15 天的单品,将结果存储在 `filtered_df` 数据框中。


`cnt=0` 和 `cnt_list=[]`: 分别初始化计数器和空列表。


`for index,row in filtered_df.iterrows():`: 对 `filtered_df` 数据框进行遍历,依次读取每一行数据。


- `cnt_list.append(row['单品编码'])`:将当前行数据中的 '单品编码' 列的值加入到列表 `cnt_list` 中。


- `print(f"单品编码:{row['单品编码']},一年最多出现{row['天数']}天")`:输出当前行数据中的 '单品编码'和 '天数'列的值。


- `cnt+=1` 和 `print(cnt)`:对计数器进行累加操作,并输出当前筛选出的单品数量。


通过以上操作,可以将所有在其销售最多一年内销售天数小于等于15天的单品筛选出来,并将它们在最多销售天数的那一年内的销售天数打印出来,方便进行进一步的数据分析和处理。同时,直方图也可以让我们更加直观的了解不同单品销售天数的分布情况。


学习1的总代码


import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=[u'simHei']
plt.rcParams['axes.unicode_minus']=False
 
xlsx_file = 'data/附件1.xlsx'
df_1 = pd.read_excel(xlsx_file)
 
xlsx_file = 'data/附件3.xlsx'
df = pd.read_excel(xlsx_file)
 
df['日期']=pd.to_datetime(df['日期'])
df['月份']=df['日期'].dt.month
 
mapping_dict=df_1.set_index('单品编码')['分类名称'].to_dict()
df['品类']=df['单品编码'].map(mapping_dict)
print(df.head(5))
 
grouped=df.groupby('单品编码')
result={}
 
for name, group in grouped:
    unique_months=group['月份'].unique()
    total_months=len(unique_months)
    season=[]
    season_list=[0]*4
    if 3 in unique_months or 4 in unique_months or 5 in unique_months:
        season.append("春季")
        season_list[0]=1
    if 6 in unique_months or 7 in unique_months or 8 in unique_months:
        season.append("夏季")
        season_list[1] = 1
    if 9 in unique_months or 10 in unique_months or 11 in unique_months:
        season.append("秋季")
        season_list[2] = 1
    if 12 in unique_months or 1 in unique_months or 2 in unique_months:
        season.append("冬季")
        season_list[3] = 1
    result[name]={
        '出现的月份':unique_months,
        '总共出现的月份数':total_months,
        '出现的季节':season,
        "季节数":len(season),
        "季节列表":season_list
    }
count_all=0
count_all_list = []
for key, value in result.items():
    if value['季节数']==4:
        count_all+=1
        count_all_list.append(key)
print(count_all)
print(count_all_list)
 
df['年份']=df['日期'].dt.year
result=df.groupby(['单品编码','年份']).agg({'日期':'nunique'}).reset_index()
result.rename(columns={'日期':'天数'},inplace=True)
 
#print(result)
 
max_days=result.groupby('单品编码')['天数'].max().reset_index()
#print(max_days)
plt.hist(max_days['天数'],bins=35,edgecolor='k')
plt.xlabel('天数')
plt.ylabel('频数')
plt.title('天数分布直方图')
plt.show()
filtered_df=max_days[max_days['天数']<=15]
cnt=0
cnt_list=[]
for index,row in filtered_df.iterrows():
    cnt_list.append(row['单品编码'])
    print(f"单品编码:{row['单品编码']},一年最多出现{row['天数']}天")
    cnt+=1
    print(cnt)


这段代码只是将两个表格中的数据进行一系列的预处理,按照时间分类


总输出如下:


相关文章
|
27天前
|
数据库 Python
Python学习的自我理解和想法(18)
这是我在学习Python第18天的总结,内容基于B站千锋教育课程,主要涉及面向对象编程的核心概念。包括:`self`关键字的作用、魔术方法的特点与使用(如构造函数`__init__`和析构函数`__del__`)、类属性与对象属性的区别及修改方式。通过学习,我初步理解了如何利用这些机制实现更灵活的程序设计,但深知目前对Python的理解仍较浅显,欢迎指正交流!
|
12天前
|
安全 数据安全/隐私保护 Python
Python学习的自我理解和想法(27)
本文记录了学习Python第27天的内容,主要介绍了使用Python操作PPTX和PDF的技巧。其中包括通过`python-pptx`库创建PPTX文件的详细步骤,如创建幻灯片对象、选择母版布局、编辑标题与副标题、添加文本框和图片,以及保存文件。此外,还讲解了如何利用`PyPDF2`库为PDF文件加密,涵盖安装库、定义函数、读取文件、设置密码及保存加密文件的过程。文章总结了Python在处理文档时的强大功能,并表达了对读者应用这些技能的期待。
|
29天前
|
数据采集 机器学习/深度学习 自然语言处理
Python学习的自我理解和想法(16)
这是我在B站千锋教育课程中学Python的第16天总结,主要学习了`datetime`和`time`模块的常用功能,包括创建日期、时间,获取当前时间及延迟操作等。同时简要介绍了多个方向的补充库,如网络爬虫、数据分析、机器学习等,并讲解了自定义模块的编写与调用方法。因开学时间有限,内容精简,希望对大家有所帮助!如有不足,欢迎指正。
|
8天前
|
存储 搜索推荐 算法
Python学习的自我理解和想法(28)
本文记录了学习Python第28天的内容——冒泡排序。通过B站千锋教育课程学习,非原创代码。文章详细介绍了冒泡排序的起源、概念、工作原理及多种Python实现方式(普通版、进阶版1和进阶版2)。同时分析了其时间复杂度(最坏、最好、平均情况)与空间复杂度,并探讨了实际应用场景(如小规模数据排序、教学示例)及局限性(如效率低下、不适用于高实时性场景)。最后总结了冒泡排序的意义及其对初学者的重要性。
|
27天前
|
Python
Python学习的自我理解和想法(19)
这是一篇关于Python面向对象学习的总结,基于B站千锋教育课程内容编写。主要涵盖三大特性:封装、继承与多态。详细讲解了继承(包括构造函数继承、多继承)及类方法与静态方法的定义、调用及区别。尽管开学后时间有限,但作者仍对所学内容进行了系统梳理,并分享了自己的理解,欢迎指正交流。
|
14天前
|
Python
Python学习的自我理解和想法(26)
这是一篇关于使用Python操作Word文档的学习总结,基于B站千锋教育课程内容编写。主要介绍了通过`python-docx`库在Word中插入列表(有序与无序)、表格,以及读取docx文件的方法。详细展示了代码示例与结果,涵盖创建文档对象、添加数据、设置样式、保存文件等步骤。虽为开学后时间有限下的简要记录,但仍清晰梳理了核心知识点,有助于初学者掌握自动化办公技巧。不足之处欢迎指正!
|
25天前
|
数据采集 数据挖掘 Python
Python学习的自我理解和想法(22)
本文记录了作者学习Python第22天的内容——正则表达式,基于B站千锋教育课程。文章简要介绍了正则表达式的概念、特点及使用场景(如爬虫、数据清洗等),并通过示例解析了`re.search()`、`re.match()`、拆分、替换和匹配中文等基本语法。正则表达式是文本处理的重要工具,尽管入门较难,但功能强大。作者表示后续会深入讲解其应用,并强调学好正则对爬虫学习的帮助。因时间有限,内容为入门概述,不足之处敬请谅解。
|
21天前
|
索引 Python
Python学习的自我理解和想法(24)
本文记录了学习Python操作Excel的第24天内容,基于B站千锋教育课程。主要介绍openpyxl插件的使用,包括安装、读取与写入Excel文件、插入图表等操作。具体内容涵盖加载工作簿、获取单元格数据、创建和保存工作表,以及通过图表展示数据。因开学时间有限,文章简要概述了各步骤代码实现,适合初学者参考学习。如有不足之处,欢迎指正!
|
27天前
|
设计模式 数据库 Python
Python学习的自我理解和想法(20)
这是我在B站千锋教育课程中学习Python第20天的总结,主要涉及面向对象编程的核心概念。内容包括:私有属性与私有方法的定义、语法及调用方式;多态的含义与实现,强调父类引用指向子类对象的特点;单例设计模式的定义、应用场景及实现步骤。通过学习,我掌握了如何在类中保护数据(私有化)、实现灵活的方法重写(多态)以及确保单一实例(单例模式)。由于开学时间有限,内容简明扼要,如有不足之处,欢迎指正!
|
18天前
|
Python
Python学习的自我理解和想法(25)
这是一篇关于Python操作Word文档(docx)的教程总结,基于B站千锋教育课程学习(非原创代码)。主要内容包括:1) docx库插件安装;2) 创建与编辑Word文档,如添加标题、段落、设置字体样式及保存;3) 向新或现有Word文档插入图片。通过简单示例展示了如何高效使用python-docx库完成文档操作。因开学时间有限,内容精简,后续将更新列表和表格相关内容。欢迎指正交流!