Python学习—装饰器的力量 (一)

简介: Python学习—装饰器的力量 (一)

Python学习—装饰器的力量
作为许多语言都存在的高级语法之一,装饰器是你必须掌握的知识点。

Python的装饰器(Decorator)允许你扩展和修改可调用对象(函数、方法和类)的行为,而无需永久修改可调用的对象本身。进一步解释就是装饰器(Decorator):从字面上理解,就是装饰对象的器件。可以在不修改原有代码的情况下,为被装饰的对象增加新的功能或者附加限制条件或者帮助输出。装饰器有很多种,有函数的装饰器,也有类的装饰器。装饰器在很多语言中的名字也不尽相同,它体现的是设计模式中的装饰模式,强调的是开放封闭原则。装饰器的语法是将@装饰器名,放在被装饰对象上面。

@dec
def func():    
    pass

在进行装饰器的介绍之前,我们必须先明确几个概念和原则:
首先,Python程序是从上往下顺序执行的,而且碰到函数的定义代码块是不会立即执行的,只有等到该函数被调用时,才会执行其内部的代码块。

def foo():    
    print("foo函数被运行了!")
#如果就这么样,foo里的语句是不会被执行的。
#程序只是简单的将定义代码块读入内存中。
# foo()    只有调用了,才会执行

其次,由于顺序执行的原因,如果你真的对同一个函数定义了两次,那么,后面的定义会覆盖前面的定义。因此,在Python中代码的放置位置是有区别的,不能随意摆放,通常函数体要放在调用的语句之前。

def foo():    
    print("我是上面的函数定义!")

foo()

def foo():    
    print("我是下面的函数定义!")

foo()
#----------------
#执行结果:
我是上面的函数定义!
我是下面的函数定义!

然后,我们还要先搞清楚几样东西:函数名、函数体、返回值,函数的内存地址、函数名加括号、函数名被当作参数、函数名加括号被当作参数、返回函数名、返回函数名加括号。

def outer(func):    
    def inner():        
        print("我是内层函数!")    
    return inner

def foo():    
    print("我是原始函数!")

outer(foo)
outer(foo())

运行结果如下:

D:\anaconda3\python.exe D:/pythonProject/明日科技网络爬虫/aiohttp复现.py
我是原始函数!

Process finished with exit code 0

函数名:foo、outer、inner
函数体:函数的整个代码结构
返回值:return后面的表达式
函数的内存地址:id(foo)、id(outer)等等
函数名加括号:对函数进行调用,比如foo()、outer(foo)
函数名作为参数:outer(foo)中的foo本身是个函数,但作为参数被传递给了outer函数
函数名加括号被当做参数:其实就是先调用函数,再将它的返回值当做别的函数的参数,例如outer(foo())
返回函数名:return inner
返回函数名加括号:return inner(),其实就是先执行inner函数,再将其返回值作为别的函数的返回值。
如果你能理解函数也是一个对象,就能很容易地理解上面的概念。

有了这些基本的概念,我们就可以通过一个实例来讲解Python中装饰器的作用了。

下例是针对函数的装饰器。
虚拟场景
有一个大公司,下属的基础平台部负责内部应用程序及API的开发。另外还有上百个业务部门负责不同的业务,这些业务部门各自调用基础平台部提供的不同函数,也就是API处理自己的业务,情况如下:

# 基础平台部门开发了上百个函数API
def f1():    
    print("业务部门1的数据接口......")
def f2():    
    print("业务部门2的数据接口......")
def f3():    
    print("业务部门3的数据接口......")
def f100():    
    print("业务部门100的数据接口......")
#各部门分别调用自己需要的API
f1()
f2()
f3()
f100()

运行结果如下:

D:\anaconda3\python.exe D:/pythonProject/明日科技网络爬虫/aiohttp复现.py
业务部门1的数据接口......
业务部门2的数据接口......
业务部门3的数据接口......
业务部门100的数据接口......

Process finished with exit code 0

公司还在创业初期时,基础平台部就开发了这些函数。由于各种原因,比如时间紧,比如人手不足,比如架构缺陷,比如考虑不周等等,没有为函数的调用进行安全认证。现在,公司发展壮大了,不能再像初创时期的“草台班子”一样将就下去了,基础平台部主管决定弥补这个缺陷,于是(纯属虚构场景):

第一天:主管叫来了一个运维工程师,工程师跑上跑下逐个部门进行通知,让他们在代码里加上认证功能,然后,当天他被开除了。

第二天:主管又叫来了一个运维工程师,工程师用shell写了个复杂的脚本,勉强实现了功能。但他很快就回去接着做运维了,不会开发的运维不是好运维…

第三天:主管叫来了一个python自动化开发工程师。哥们是这么干的,只对基础平台的代码进行重构,让N个业务部门无需做任何修改。这哥们很快也被开了,连运维也没得做。

def f1():    
    #加入认证程序代码    
    print("业务部门1数据接口......")
def f2():   
    # 加入认证程序代码    
    print("业务部门2数据接口......")
def f3():    
    # 加入认证程序代码    
    print("业务部门3数据接口......")
def f100():    #
    加入认证程序代码    
    print("业务部门100数据接口......")
#各部门分别调用
f1()
f2()
f3()
f100()

第四天:主管又换了个开发工程师。他是这么干的:定义个认证函数,在原来其他的函数中调用它,代码如下。

def login():    
    print("认证成功!")
def f1():    
    login()    
    print("业务部门1数据接口......")
def f2():    
    login()    
    print("业务部门2数据接口......")
def f3():    
    login()    
    print("业务部门3数据接口......")
def f100():    
    login()    
    print("业务部门100数据接口......")
#各部门分别调用
f1()
f2()
f3()
f100()

但是主管依然不满意,不过这一次他解释了为什么。主管说:写代码要遵循开放封闭原则,简单来说,已经实现的功能代码内部不允许被修改,但外部可以被扩展。如果将开放封闭原则应用在上面的需求中,那么就是不允许在函数f1 、f2、f3…f100的内部进行代码修改,但是可以在外部对它们进行扩展。

第五天:已经没有时间让主管找别人来干这活了,他决定亲自上阵,使用装饰器完成这一任务,并且打算在函数执行后再增加个日志功能。主管的代码如下:

def outer(func):    
    def inner():        
        print("认证成功!")        
        result = func()        
        print("日志添加成功")        
        return result   
    return inner
@outerdef 
f1():    
    print("业务部门1数据接口......")
@outerdef 
f2():    
    print("业务部门2数据接口......")

@outer
def f3():    
    print("业务部门3数据接口......")
@outer
def f100():    
    print("业务部门100数据接口......")
#各部门分别调用
f1()
f2()
f3()
af100()

使用装饰器@outer,也是仅需对基础平台的代码进行拓展,就可以实现在其他部门调用函数API之前都进行认证操作,在操作结束后保存日志,并且其他业务部门无需对他们自己的代码做任何修改,调用方式也不用变。
接下文 Python学习—装饰器的力量 (二)https://developer.aliyun.com/article/1618949

相关文章
|
7天前
|
Python
深入理解Python装饰器:从入门到实践####
本文旨在通过简明扼要的方式,为读者揭开Python装饰器的神秘面纱,从基本概念、工作原理到实际应用场景进行全面解析。不同于常规的摘要仅概述内容概要,本文将直接以一段精炼代码示例开篇,展示装饰器如何优雅地增强函数功能,激发读者探索兴趣,随后深入探讨其背后的机制与高级用法。 ####
36 11
|
3天前
|
设计模式 缓存 开发者
深入浅出Python装饰器
【10月更文挑战第39天】本文将通过浅显易懂的语言和生动的比喻,带你探索Python中一个神奇而又强大的特性——装饰器。我们将一起揭开装饰器的神秘面纱,了解它的工作原理,并通过实际代码示例学习如何应用它来美化我们的代码。无论你是编程新手还是有经验的开发者,这篇文章都将为你打开一扇新的大门,让你的代码更加优雅和高效。
|
3天前
|
缓存 测试技术 数据库
深入理解Python中的装饰器
在本文中,我们将探讨Python语言中一个强大而灵活的特性——装饰器。装饰器允许开发者在不修改原有函数或方法代码的情况下增加额外的功能,这大大提高了代码的复用性和可读性。通过具体示例和应用场景的讲解,本篇文章旨在为读者提供一个关于如何使用装饰器的全面指南,包括装饰器的定义、使用场景、以及如何自定义装饰器等内容。
|
8天前
|
设计模式 Python
掌握Python中的装饰器
【10月更文挑战第34天】装饰器是Python中一种强大的工具,它允许我们在不修改原函数代码的情况下增加其功能。本文通过简单易懂的语言和实例,引导你理解装饰器的概念、种类及其应用,帮助你在编程实践中灵活使用这一高级特性。
|
4天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
7天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
3天前
|
设计模式 缓存 开发框架
Python中的装饰器:从入门到实践####
本文深入探讨了Python中装饰器的工作原理与应用,通过具体案例展示了如何利用装饰器增强函数功能、提高代码复用性和可读性。读者将学习到装饰器的基本概念、实现方法及其在实际项目开发中的实用技巧。 ####
15 3
|
3天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
12 1
|
8天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
4天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。