Python学习—装饰器的力量 (一)

简介: Python学习—装饰器的力量 (一)

Python学习—装饰器的力量
作为许多语言都存在的高级语法之一,装饰器是你必须掌握的知识点。

Python的装饰器(Decorator)允许你扩展和修改可调用对象(函数、方法和类)的行为,而无需永久修改可调用的对象本身。进一步解释就是装饰器(Decorator):从字面上理解,就是装饰对象的器件。可以在不修改原有代码的情况下,为被装饰的对象增加新的功能或者附加限制条件或者帮助输出。装饰器有很多种,有函数的装饰器,也有类的装饰器。装饰器在很多语言中的名字也不尽相同,它体现的是设计模式中的装饰模式,强调的是开放封闭原则。装饰器的语法是将@装饰器名,放在被装饰对象上面。

@dec
def func():    
    pass

在进行装饰器的介绍之前,我们必须先明确几个概念和原则:
首先,Python程序是从上往下顺序执行的,而且碰到函数的定义代码块是不会立即执行的,只有等到该函数被调用时,才会执行其内部的代码块。

def foo():    
    print("foo函数被运行了!")
#如果就这么样,foo里的语句是不会被执行的。
#程序只是简单的将定义代码块读入内存中。
# foo()    只有调用了,才会执行

其次,由于顺序执行的原因,如果你真的对同一个函数定义了两次,那么,后面的定义会覆盖前面的定义。因此,在Python中代码的放置位置是有区别的,不能随意摆放,通常函数体要放在调用的语句之前。

def foo():    
    print("我是上面的函数定义!")

foo()

def foo():    
    print("我是下面的函数定义!")

foo()
#----------------
#执行结果:
我是上面的函数定义!
我是下面的函数定义!

然后,我们还要先搞清楚几样东西:函数名、函数体、返回值,函数的内存地址、函数名加括号、函数名被当作参数、函数名加括号被当作参数、返回函数名、返回函数名加括号。

def outer(func):    
    def inner():        
        print("我是内层函数!")    
    return inner

def foo():    
    print("我是原始函数!")

outer(foo)
outer(foo())

运行结果如下:

D:\anaconda3\python.exe D:/pythonProject/明日科技网络爬虫/aiohttp复现.py
我是原始函数!

Process finished with exit code 0

函数名:foo、outer、inner
函数体:函数的整个代码结构
返回值:return后面的表达式
函数的内存地址:id(foo)、id(outer)等等
函数名加括号:对函数进行调用,比如foo()、outer(foo)
函数名作为参数:outer(foo)中的foo本身是个函数,但作为参数被传递给了outer函数
函数名加括号被当做参数:其实就是先调用函数,再将它的返回值当做别的函数的参数,例如outer(foo())
返回函数名:return inner
返回函数名加括号:return inner(),其实就是先执行inner函数,再将其返回值作为别的函数的返回值。
如果你能理解函数也是一个对象,就能很容易地理解上面的概念。

有了这些基本的概念,我们就可以通过一个实例来讲解Python中装饰器的作用了。

下例是针对函数的装饰器。
虚拟场景
有一个大公司,下属的基础平台部负责内部应用程序及API的开发。另外还有上百个业务部门负责不同的业务,这些业务部门各自调用基础平台部提供的不同函数,也就是API处理自己的业务,情况如下:

# 基础平台部门开发了上百个函数API
def f1():    
    print("业务部门1的数据接口......")
def f2():    
    print("业务部门2的数据接口......")
def f3():    
    print("业务部门3的数据接口......")
def f100():    
    print("业务部门100的数据接口......")
#各部门分别调用自己需要的API
f1()
f2()
f3()
f100()

运行结果如下:

D:\anaconda3\python.exe D:/pythonProject/明日科技网络爬虫/aiohttp复现.py
业务部门1的数据接口......
业务部门2的数据接口......
业务部门3的数据接口......
业务部门100的数据接口......

Process finished with exit code 0

公司还在创业初期时,基础平台部就开发了这些函数。由于各种原因,比如时间紧,比如人手不足,比如架构缺陷,比如考虑不周等等,没有为函数的调用进行安全认证。现在,公司发展壮大了,不能再像初创时期的“草台班子”一样将就下去了,基础平台部主管决定弥补这个缺陷,于是(纯属虚构场景):

第一天:主管叫来了一个运维工程师,工程师跑上跑下逐个部门进行通知,让他们在代码里加上认证功能,然后,当天他被开除了。

第二天:主管又叫来了一个运维工程师,工程师用shell写了个复杂的脚本,勉强实现了功能。但他很快就回去接着做运维了,不会开发的运维不是好运维…

第三天:主管叫来了一个python自动化开发工程师。哥们是这么干的,只对基础平台的代码进行重构,让N个业务部门无需做任何修改。这哥们很快也被开了,连运维也没得做。

def f1():    
    #加入认证程序代码    
    print("业务部门1数据接口......")
def f2():   
    # 加入认证程序代码    
    print("业务部门2数据接口......")
def f3():    
    # 加入认证程序代码    
    print("业务部门3数据接口......")
def f100():    #
    加入认证程序代码    
    print("业务部门100数据接口......")
#各部门分别调用
f1()
f2()
f3()
f100()

第四天:主管又换了个开发工程师。他是这么干的:定义个认证函数,在原来其他的函数中调用它,代码如下。

def login():    
    print("认证成功!")
def f1():    
    login()    
    print("业务部门1数据接口......")
def f2():    
    login()    
    print("业务部门2数据接口......")
def f3():    
    login()    
    print("业务部门3数据接口......")
def f100():    
    login()    
    print("业务部门100数据接口......")
#各部门分别调用
f1()
f2()
f3()
f100()

但是主管依然不满意,不过这一次他解释了为什么。主管说:写代码要遵循开放封闭原则,简单来说,已经实现的功能代码内部不允许被修改,但外部可以被扩展。如果将开放封闭原则应用在上面的需求中,那么就是不允许在函数f1 、f2、f3…f100的内部进行代码修改,但是可以在外部对它们进行扩展。

第五天:已经没有时间让主管找别人来干这活了,他决定亲自上阵,使用装饰器完成这一任务,并且打算在函数执行后再增加个日志功能。主管的代码如下:

def outer(func):    
    def inner():        
        print("认证成功!")        
        result = func()        
        print("日志添加成功")        
        return result   
    return inner
@outerdef 
f1():    
    print("业务部门1数据接口......")
@outerdef 
f2():    
    print("业务部门2数据接口......")

@outer
def f3():    
    print("业务部门3数据接口......")
@outer
def f100():    
    print("业务部门100数据接口......")
#各部门分别调用
f1()
f2()
f3()
af100()

使用装饰器@outer,也是仅需对基础平台的代码进行拓展,就可以实现在其他部门调用函数API之前都进行认证操作,在操作结束后保存日志,并且其他业务部门无需对他们自己的代码做任何修改,调用方式也不用变。
接下文 Python学习—装饰器的力量 (二)https://developer.aliyun.com/article/1618949

相关文章
|
1天前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
12 3
|
1月前
|
设计模式 前端开发 Shell
Python装饰器是什么?
装饰器是Python中用于动态修改函数、方法或类功能的工具,无需改变原代码。通过将函数作为参数传递并返回新函数,装饰器可以在原函数执行前后添加额外逻辑。例如,使用`@logger`装饰器可以打印函数调用日志,而`@timethis`则可用于计算函数执行时间。为了保持被装饰函数的元信息(如`__name__`和`__doc__`),可使用`functools.wraps`装饰器。此外,带参数的装饰器可通过嵌套函数实现,如`@timeitS(2)`,以根据参数条件输出特定信息。
90 59
|
1月前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
106 61
Python装饰器实战:打造高效性能计时工具
|
1月前
|
数据可视化 数据挖掘 大数据
1.1 学习Python操作Excel的必要性
学习Python操作Excel在当今数据驱动的商业环境中至关重要。Python能处理大规模数据集,突破Excel行数限制;提供丰富的库实现复杂数据分析和自动化任务,显著提高效率。掌握这项技能不仅能提升个人能力,还能为企业带来价值,减少人为错误,提高决策效率。推荐从基础语法、Excel操作库开始学习,逐步进阶到数据可视化和自动化报表系统。通过实际项目巩固知识,关注新技术,为职业发展奠定坚实基础。
|
2月前
|
Python
Python学习的自我理解和想法(10)
这是我在千锋教育B站课程学习Python的第10天笔记,主要学习了函数的相关知识。内容包括函数的定义、组成、命名、参数分类(必须参数、关键字参数、默认参数、不定长参数)及调用注意事项。由于开学时间有限,记录较为简略,望谅解。通过学习,我理解了函数可以封装常用功能,简化代码并便于维护。若有不当之处,欢迎指正。
|
2月前
|
Python 容器
Python学习的自我理解和想法(9)
这是我在B站跟随千锋教育学习Python的第9天,主要学习了赋值、浅拷贝和深拷贝的概念及其底层逻辑。由于开学时间紧张,内容较为简略,但希望能帮助理解这些重要概念。赋值是创建引用,浅拷贝创建新容器但元素仍引用原对象,深拷贝则创建完全独立的新对象。希望对大家有所帮助,欢迎讨论。
|
2月前
|
缓存 数据安全/隐私保护 Python
python装饰器底层原理
Python装饰器是一个强大的工具,可以在不修改原始函数代码的情况下,动态地增加功能。理解装饰器的底层原理,包括函数是对象、闭包和高阶函数,可以帮助我们更好地使用和编写装饰器。无论是用于日志记录、权限验证还是缓存,装饰器都可以显著提高代码的可维护性和复用性。
50 5
|
2月前
|
存储 安全 索引
Python学习的自我理解和想法(8)
这是我在B站千锋教育学习Python的第8天,主要内容是元组。元组是一种不可变的序列数据类型,用于存储一组有序的元素。本文介绍了元组的基本操作,包括创建、访问、合并、切片、遍历等,并总结了元组的主要特点,如不可变性、有序性和可作为字典的键。由于开学时间紧张,内容较为简略,望见谅。
|
2月前
|
Python
Python学习的自我理解和想法(7)
学的是b站的课程(千锋教育),跟老师写程序,不是自创的代码! 今天是学Python的第七天,学的内容是集合。开学了,时间不多,写得不多,见谅。
|
2月前
|
存储 索引 Python
Python学习的自我理解和想法(6)
这是我在B站千锋教育学习Python的第6天笔记,主要学习了字典的使用方法,包括字典的基本概念、访问、修改、添加、删除元素,以及获取字典信息、遍历字典和合并字典等内容。开学后时间有限,内容较为简略,敬请谅解。

热门文章

最新文章

推荐镜像

更多