【数据集】以人脸关键点为例讲解:如何通过开源项目快速制作关键点数据集

简介: 【数据集】以人脸关键点为例讲解:如何通过开源项目快速制作关键点数据集

前言

  人脸关键点检测是计算机视觉中的重要任务,它在人脸识别、表情识别、人脸美化等应用中发挥着关键作用。然而,为了训练高效准确的人脸关键点检测模型,我们需要大量的标注数据集。在本篇博客中,我们将介绍如何快速制作高质量的人脸关键点数据集,以支持后续模型的训练与优化。

关键点标注信息展示

  在这里向大家介绍一款简单常见的关键点标注程序:labelme,大家可以通过这款软件进行关键点标注。在这里我以帅气的郭富城为例子进行标注五官关键点以及相应的json文件:


shell

复制代码

{
  "version": "5.2.1",
  "flags": {},
  "shapes": [
    {
      "label": "0",
      "points": [
        [
          74.02476780185759,
          130.80495356037153
        ]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "point",
      "flags": {}
    },
    {
      "label": "1",
      "points": [
        [
          126.656346749226,
          136.687306501548
        ]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "point",
      "flags": {}
    },
    {
      "label": "2",
      "points": [
        [
          101.26934984520125,
          169.1950464396285
        ]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "point",
      "flags": {}
    },
    {
      "label": "3",
      "points": [
        [
          101.57894736842104,
          194.89164086687308
        ]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "point",
      "flags": {}
    },
    {
      "label": "4",
      "points": [
        [
          45.8513931888545,
          134.82972136222912
        ]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "point",
      "flags": {}
    },
    {
      "label": "5",
      "points": [
        [
          162.26006191950466,
          143.49845201238392
        ]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "point",
      "flags": {}
    }
  ],
  "imagePath": "300.jpg",
  "imageData": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEsAPADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDrMUVN5dBQCggiHFO604rTcUgFFOHNNAp4FAxwNLmgClpiDNGRRikYhRknAoGOzRWXqev6ZoyqdQukg3DKq33j+A5rPi8d+HJuE1IZ9DE4P8qAOkzRXD6v8StLsBttVNy59flA/SuUvvitetnyfLiH+wMkfnTsFj2TdSg14OvxW1uObMTGRfSQLz+S5H51vWHxhmZQLvSoz6skwX+dFmFj1wGnZrzq2+LOkvIEntJ4/dJEf+orpNK8Y6FrDCO2vlWU8COYGNifQbsZ/CkB0W6nA1HTh1pAPB5p1MFOzQA4GnCo80ucUAKSaTNIWppPrQAMahY1ITmonoGRMahZsVI1V5GxWbNYl0DikxS5oyK0MBpWoyOakJpKYxoGacBxS4pQOKAFxSkUYrzrxn8RDZmbTtCdWnT5Zrs4KRH0XPBPv/OgDo/EPjTSfDp8qeRprs9LeEZb8ew/n7V5/q/xF1nUZQtiItNhHTkSSH68HH5CuCkuvOmkmaSW6nc5kkY4BJ9SeT/KoluE3BJuV/uRoSPyJA/SqSHY6KeZbq4a4vtR+0XD/eabkn86glurYAohTB7qAKoPdW0cQKWrIf8AaiAP8qk8u3tU+0zRoZMZCkcL9fU+1MY4abDLmRRJJjkszbQPxprLplsP3hhLei5b9apy3dzqLYMnlW6/gB+A7+1MYG3HyKIP9uTmRvp6fpQBfeSxKAi1dUI+8RgH6ZqF10mVQGQxt/eV1/xxVaCxa4JlcOydTJIdo/xNStaWKD53GT02qf6mgLkf9nWrE+Rdq/8AsscH8xn+VNEN1aNmNmX2bof6H8ad9hgfJieQD/aUGlS3uoRmKUt6L1/xoEdd4V+I+qaLKtveO1zaA4MUp5Qf7LdR9DkfSvaNH1zTtdthPYXKScAsmcMmfUV82q6SqBcwEHPDqMYqS3vbjSbtLi0uJYXQ/JLG3T6+n+c5pOIz6gHWnVxPgTxyniaI2d4oi1KJcnHAmX+8B2PqPy9u1qCQoJopO9ABmkzQabTADUTmpCcVE5pMaIHOKrSNU8h61TkNQ0awNKlHSijFaGAGloxSgUAFL2p1ZHibxBb+G9HkvZhvk6RR/wB9v8PWgZzHxJ8X/wBi6f8A2baSEXc6/OynBRD2HoT+grxowtKqy3biKLqkfT/P86s3t7d6nq0t5cET3szbufux/X9OKiSH52keTzZBwZCflH4/4VSGR7Y2bZCsrgdgu0Cr0UMixgCN09g+3P5Cmqyhflmz67AcfT0xSbXGW3gcfxBh/IUxjVieOdriZiqpyNzZyfX8P54quyzatdLEp+UDcxPamzuZV+zxckt0Udf88frRc3P2S2NjA3zE5nkB6n+6D6CgCWe8S2ItdP8Anf7vmAd/9n/Go2SKyO64YTXR/wCWechf94/0qBZRYx/u/wDj5Yct/wA8x6D3pq2pCiS5lEQbkA8s34f40CEmvZZGzvLMO57fQdqhBkY5L4z71ajWEn9zAGA6vM3H5VcFrcvGG8wRoeBsTaP6E/gKAMsI558wfiD/AIU5VmVvlKt9D/hVyWK1iH+kXUry91Rs/wBKiSeJnxEsi+hJLE/hmiwxwuDjEuQT1LfMD+PUUuWjk3rJuBGMOcgj61HJIy8OQwPGGQqahCtyIs887Cc5/wAaAL9vfTaXdxXljK8MsThkYdUP+fwNfQngzxVH4p0dJ3QQ3qKPOi7HtuX1U4P0IIr5pLFl7kDqO4rsfAniSXSdRgjAJMchaPB5dGxvi/HAI/2gPU1LQH0QaMUkbxzwxzROGjkUOrDoQeQadipJGYpMU8imkYoAjNQSHFTsKrymgaK0hqpIeKsSGqkpwDUs1ibNKKB7A04I3oasxEpRTxC57U9bdqBDK8S+JOry6p4k+xQj91a/KrHoW7n6D9TXubW5EbMWC4BOSOlfNnia9DatcyhCA8jFNwwWAJHP65984xTQ0ZzCO3i2R5IPJboX/H0qIXdrGAZEa4deig7Y1/xqjJJJcSHLZzyx6D/9VKltIx+VWx6lc/pTRReOsSPIGSIxj0jNQXGoTOSDux1+YYqWK0iUgyFmPfcpXH506aOMyIiKACfSmBBZFreOW5P38bE+p7/gM1WCvGQf4jyO9XblP3hiKkbCSQB3yB/KmToIplJ+Z9o2qf8AP4UIBgC2wDECS4bkA8hPf3NFrZvfSs8km1BzJI1ROME+YSOefVqGuJJQI8YjHRB0HuaLgav23T9PG21h8yT/AJ6Pyfw9KqyXt1dkom4AjkRjLEe59Ppx7VTXyw2SGlc9hwKsrBLKu2RhFH18tB/P0/E0ASwfZrcDzhHv9Pvt+nH61bNxFtJdWjXsHwv6cn9Kp4t4FwG2ED+E5Y/jj+Q/GomnKjEEYjz/ABscMfzNAFp7mLyyoifae74Qf/XqqYoX5RgGPTGaqOpdstKC3vmmlSpwwwexzQBbbO7JUB1/WiNWjnDISDkFSD/nmqod42wencetXo/mTYxyuMqfY96APoT4c6udX8IwlyDLbu0LAdu4/Dnj2rra8f8AhDdNbXTRlm8q93RMp6CWP5gR9VJ/759xXsOKzehLG45pp6089aY1AEL1UlIzVqQ1SlOSaYFaU8mqUp61akPWqknepsaJnZrbKB2FP2Rr1Iqg12fWoWuj61tymHMahaId6Tz4x2rJM5J60okYnrRyi5ibXdQW10K9mCk7ImJAOOMeo5H4c+lfL2tSST30jTFRKeqKMCMdAuO2P/rV9CeLbhoPCl+ythmj2g5xjJ5/TNfN99MZJCDnOck/yosXEgWbylAQDPqRSpLNJKDvZm9+agAB71u6JZGSQEjr2qW7ItK7Fg80Lk5Vscg8j64pFV5bpcxBTkZAHWu5s/DjyqGX/wDVWnB4PDYZlUMOelZOobKmcfFpfL3Lx5jIJyO3Hv8A55rDntwLxppuMpvY9geoH6V7F/YAW1MLKDx1HSuL1vw5Iu8BDg9hSUwdM4GSOSYyTyfUD61DIpjHlsen8I9feulm01oVjVQNu0nP+fpWS+myz3DgKRg4xWikjPlZSWXygMEZ9F4H4nrTHuJZOC+FHIA4FX7zThCNqDO3qRWcYZFONhBPTiqTQuVk0au33SqDux6/rTlFvG2TO5PqgxVYhsncDmk3bTjaB9RQItvcQnAWSc/72DimN5TDAYH0IBB/LpVcuT1A/AYpvU0wJWQ7fXFWLaQrAc/wHI+h4I/kaqByCM1at2AkyeVPX6dD/OgD0/4WWsl1MfKkwEkV8eki5PTsGTI+qivairDqK8c+Dto0WsNcD/VGF1lBHdSpUj35P4V7gGjfoQamSJbKBqNulX2hVqrSQEdDSEUZDxVGU9avTo654rPkoGVpDVaQVZfrUDigpGsWpvJp2w+lIVI7Vuc4qinggVD83oaQh6QzK8ZOG8K3i7sZA6jOeen+cV8+3kX7wsAW7dOK+gPEsTSeHrwHHCZ+bpXhN2rLlVYjHPuKTRpHYyhHtf5hlvTsK6rw5EXlTdkL7iuahjZpSQdv0rtvDlv8y4GOec1hUehtTV2emabAi2yYxnFacAC9cVm2LYhAI5q6ZQD6e9cbep3JaGkEVlHAxVC8sY5QdwGKcl1j60/z945JouFjkdR8Oo7EonB9qy4/C7iVpF4JrvWVT1xSiNMdOarnZPIjz5/Chk6gLk56d6YfCaLkbMj1xXoBRc00rHjkAVXOLkPOJ/CUPlkCIAnvXM3/AIWaDJTqe5HSvYJ0jIJFYeoWqupOKaqMTpo8Yu7Ca1fDrx6iqld/rGnIwbK1wkyeXMy+hrphPmOapDlG7uMGpYPmJT1Bx+VQVJASsyMOxqzI9j+EMpDakgPybYnHPOTn/P4V6qsp45Oa8j+EAWS+1IcZManAGO9exRiJYiGHzUzOW4q3DjvTjd5HzCq5YVBM4xxRYRbeRHHBqpLCj9qpvKQab9pZe9HKO4k1oRytVHjZc5FX1u8/ep2Y5RU8o1Ium3A/vVGYhn+KtI21xJ1fA+lC2DD70houSUVgXuTT/IX0q79mRPvMfzqCaa3hRiWHAJxmhvS4JNuxR1Syin0q5jcj5kIwvJ6V846lblJpFIxhyADxzXpSarfDWridJW2yuQ8ZPHtXC+I1H9pTyNwGO7HXmsaVVyep3VcOqaRkQW6iVSD3616D4Zst65CgnHpWRofhuS8ijuHXA6qtekaVpi2sIUKB+FZ1Z30KpQtqLbxFDgjnFW1i3g5U1aEIx0FOUFT2rA3KBtiuTSAbT6Vo4yfmFI0a+maBmbkg8fzp+/Aqy8C+lM+z54FA7lUufeoJHJ4zWj9kqNrQYJ60BczWBK9aqTxbwfetRoFGarzRqBxyaBHHazABC3HNeY6mhW8c4xXr+qW5MTZGeDxXk+tJtv3APU8iumjuc1ZaGXU0aEbWU9+vpTTGVYKw57+1WY4vmUc5PUeldRynrHwcsZmvL+6VT5SxhTj1Jzj9K9ZeNyehrl/hy9jo3hS2ikCx3Eg3Sdsn3rtU1Czl6SLRch7mcYWxzUTwmtoyW7DgrUMkcLdDRcmxgSRYNQPH6Vry26knBqlJbsDxTuBSICrjvTPM21M8D5qM2zA8g0XQyzeePrWIHYd30rAu/iPKxKwpz+dOs/h8hYG6kZ/YmuhtPCem2gGIVyPaiyEcRJ4j1/UW/cxygH0GKfaaX4gubqOaZ22hgSCT0r0mKxtYRhIl/Kp1VR0UD8KNBrTU8wexNvcSCQbWVjXDeII/Nv8AgZ3EAD8a9a8U2wiu/OUYEq8/UV53f2ZXV7YOCMyr+IzXBBck2j1Zv2lNSO40q1S1sYARjaoBFJq3iGPSocIuZT+VXli/diqz2EFyW+0hSg/vdKhPXUTWmhyMvjq6D5JVR7dKt2nxAtpDsm4f1B4q7caf4PclLieyVhxtaZQf51hah4K8OXUbPptygPX93KCP51p7r3M/eR2ln4hs7uPImXPsauLqUbH7wIrxS50C+02X/RrpuPfrV/StW1C3lVLhmYZ5OalwXRmik+p68LxSeOasRTRk84rkra7ZkVweMU641j7OrMWAwO9ZlnXGaLHDVXMqnIrhJPGVrFnfLjFRj4g2IA2zLn3qlCT6EOcUd0ysxwFqF7MnJwQa5NPiDabcq6sfTPSnHx6pIO1NvfB61Xs5C9ojTv7RmDAj2rzPxFokiXUk8Sbm7E9q9Jg1231NGMRHHWqN9brc7vSiLcWEkpo8ciQ+YUdcsrfNzzXT+FrC3fVhd3+Db2/JH94/SsbWYPI8ROijAJBxXU6XYnyenWuqU/dMKdO8/Q7K18Vx65ff2bcWkcNoeIX/AI1IrpYvCmXITUWjx0+bNefWtoI7xHA5XnircfiS/t9VAlD7XOAecVFKUtR4uEU1Y6+50bX7Fsw3JmTsRzTrZfEZOHVFUfxOdtaen6ybm1Usx34qpeXzZOZPk+ta8zOWxajNyo/fXKlvRBmklu40HMrGsGTUTu3ITs7VXkugoMssuF9DSuwsi/e6sFmVUJ/E1WGtMpB3H865qfVFu7w7cAIMD3qZJQWBPSgo9dDZ5pCTmogcU9WG7mtDEmUcUNxSbsCoHl5xQO+hR1q1+2WLr/EnzD+tcFqFs/2uxaVOUmChsdRXpI+br0rG1HR3dVKFcJKrtnqVB6fyrlrK0lI7cPO8HAlhXEeCKo32kR6hC0bSvGh6qD96tBG5xTnUnkdPSuY6Dz7U/h5p11byQRSi2uCdwdhkE1l6P8MZLCWWW/uIpOMJ5LdPevQb6HevBZGH8QNYM8WobiFnGPcVqqjtYhwTOevNA1Kw3eQ7zQjoHYMf8azLe2uJ7lC0LBT1JGOfSur+wX11KqNIzduOK3LTQPL2mRi7d6lyLsQaZpLTWIJUkYrnfE2nyW8RByM+lep6bZCK32gVzviaxWUlQuTUoe+h4wbK0dGlum2qOpqHPhiKXZKLgEdSENdzPo0avH9otxIi9F7E+pqK80Lw1qjILqGe1lAwWibHH4itotdTKUW9jBtLHwneRForiaLtudSP1q5F4VsJjutdQ84egkBrp0sPDlnpotLd2aNVwMrkn3JrDXwrBcXhns99vzw4PNNy7MSh3RZsNDGmOCGYZ7Z4ra8v5D9OlOsdLnjQJPctLjoSKtzwCKMj2rKTuzRKyPKdYt/O8UsAOVxniursLdo7cAjrzVS2sRc67e3TAbEbb05Jq9qOoLYW6mQgSPwi1pJ3sgp2inJnQaNb20MDyyANIf0FV9b8hoGMcShxyDVDTr/FvvlkWMHoelLeTQ3EDNFIXJ681slZHDOTlK7LnhzU1MeHYEnjFat8BKuVxk+teeWN+1lqTRnlWO4Z/Wumk1VjDuDdRgU7CFublYTtznHGKxNSv3ZTlu3aieXe+WNZ11l3C0wCwJ85mY/eFbUcpxgngfrWDDJsl2+1a8RLKpoA9mBqRKYowalUcVoYjmb5cVWIJfNSt3FMUc0WAuWFsbq5SIdzz7Cs3WdWsYddu9MicCSPaGTvkgV1ug2nlwG5YfNJ936V4D481Frf4xtbj7z3kGfodtY1FzaHRRfK7neG42MfrS/aiRjP5VRlJDcU6IAnrXCegiWVy3eoBEzN90VcSNR2qXbHt46+lAEMGIDxjPTFaUOHAOKzMjecDnsK29OhLD51ximDNO1AEOCO1c7rG37Qa6hVCRHIrnNVh4aSm9hRMORY5FKMMg1mT2EZbDRhh71aMo8wrnmpgA64pFWMuPTbVG3CPHPStOC3VANi4FIEKPUizbeKBWLShFGeM1mahKCpANSS3aqOT1rJubkEMSeAP0poTJdHsmW0uPMjAy5kDHqc1xviKD7VfJOCSF4A9K62LWFe3eG3YFiMZFc7fxMbXc2cg+nWuimurOatL7KOd1szNADG5VI14ApuhahKYAGc89qs3q4sgGzkj0rD01hE+Dwd2RWxzm3qKtkTL95TmrdtdtLGoJJ4qNWWSLLdDx1qg0xtroHojcCgDZJByKhl5fPtTo3DIp4JNDEZOetMCnKCsoI9ea1LWceWNx+tZtwcZ7nFLbvlTg8kUAfQOUX7zge1QHU7JJDG0wRvRqx11AO4BHU55IrjPHKX9teQXtorPHL+7YKOjdqXMyOU9Pe6iEe8NvH+zzUukxNqd6sO3an3n9Qv/wBevPvDsd5Y232q/uD5m3iEHp9a9M+H5+0abc3jHLSTFQfYcUnJlKK3OvRFRAqgBQMADtXzJ8XbJ9N+MtneMD5dy1vMp+jbT/Kvp3tXjvx+0Brzw7Y65AmZtPnAcj+43+DAfnQUtyFs5yaakgBqKK4W6s0mXGJFDD6EZqAO2/Hf1rhZ6KNRZqUscZGaoxB93PNattbhyMg0Bcl06JTcK8vA7Z71uxzQhiAR17VzusRTixJsyBMoyoPeuKt9e122ncXluoiHcE5FNJibPWZrxVGFNZF/Oske3PWuBbxqFJDNyKy5vH5W5w0Mrr/eC8U7Nj0O11K0SJ45FwM8Gmx8DqKztL1OTWx5joVjHTPerzRtG2MHFJqw7lj5WGe/0qtcsoX3qOS4ZB6VmXF4xOKQxJ5fnwKpahMIbGZz2U1KJN3zHj3rF8R3RTS5NvU1pBamVR2i2Yfhm9lVpXVifnbaDya1JfFqpvgurZSPpiuT8MXBivGGT68Gun1GygmKzqA3rkdK62cBj3F4b4mRRtjXOB61nKBG/J5+lad5EsSAIMc4AqnJHzu20AX7aZtoXJxUWpKTAuOoOQaZasehzxzVq5Gbb9aAE0+6DKA/XpWgWAGRzXPK5hmDg8HrWrFOCmd1MBbhsKSfSoLWUEKPamXUvyHnrWp4X8Kar4hSOWCPybZSQZ5OF69v7x+lJ6AtTtYrzEyseh/nW3bypcQOko3I4weenuKw7bSb1zvMZX/eGM1fkY2Uex5Bv74PSpEZV5JcWF19lYkqw3Rtj7y9q9Q+Ft0s/h6ePcMpcMcemTmvPbqKLVbIiWTy2jP7tz6nt9KvfCvVn07xFe6PdfKZRlc8fMv/ANagpHt5YBc1m63pkGu6JeabcDMdxE0Z9sjrVhZMjg0obBqraCvY8B0ozWFq+mXfFzYSG3kH+70P0IxV1JQZM+9dP8RvDpt7j/hIrRflKiO9QDqo6P8Ah39vpXFJLnBBrkqRsztpz5kdDbAE7v4R3rUiu440+YiufhugkO3oSOtc/qesajFI0cELyD/ZxUJFtneXF+hQlSD+NYN7PHMCPLGTXO2etPAmNTgntyem7ofxq3L4m01APLXOOpqrWBK5mSaXby6gzNECMc8d6v2+l2PmAvCuB2Iq2NX0lLM3JnXJ7Y5zVOHW9OlYnzPLY9M8Uw5WdTZpDGgWNQAOgqxOqumRiuOuNfgtI94uI+P9qpLbxRFdAbWB+hoauK9maF27bip4xWVM4Dc1eubgSR5JrCuZiDyamKKbLTzADrxWLrttcPbL5kbJHPEXiJH3hkjI/EVo6bbT6zqUVjDuwxBkYfwLnk/rXqfj/wALRXXhCCWyjAk01PlVevlYww/QH8K6KUepzVp6WPmDTQ8V/wBxtznFd3YuJ7co7HOK5G+jl0/Uy6hfLkOQT0zW9pMvmKA/GT1Fas5yHVI/KjJ9DwfWs2OUPGQee4Ire1KHzY2U4HHWuTLNBOY29aQGhE5WYY6e9amN0RHr6ViBs4Yd61baQMgycEiqApSR8e1MhlYNs5J6AAda3tG8O3/iG9a2skBjU/vJW+4g9z/SvVfDvgHSPD5Wcr9rvR/y2lHCn/ZHb68mplJRKjBs5Twt4A+0GO+1qM7eqWp4z7v/AIfnXpUKrEqxxqqqowoUYAHoBUsienA9qjQZPA6Vzym2dMYJHmr+I5pAv708Zwc1Et4HTdKwK/Xk1Y1PRLHUTv0+RLW4H/LM/dYf0rn9RivdNTbdQFR0DjlfrkVuchqHVdzjBIHZV6ClumurO+svEVqxZ4GXzlHXA7/lWJZTrxhgTW/aXp2hNgKnhs+9MD3LSNVi1Cwgu4mDJKgYYrT3gng8V5f4HvvsTPpmSbcnfbkn7vqn+FeiQS7lzVLVA9y7JGlxA8MqhkcFSDyCK8O8UaLJ4T1jyDn+z52JtpD0X/YJ/lXuCNxms7xJoFr4k0aawu0BVxwe6nsRUTipKxcJ8rPF9+9QVJ9xV+zhhzuIye9c1GL3w1rz6FqxOVP+jzHpIvaustsOmBg1ySXKzsi0ye5jglj2SIrL6EVSHh3w/eA77eJX9VAFXJLdmjOM1zOoWF8GJt5HU+1EWy07F5vAWjtKQJZBGBkDecVBL4K0OAksGc9sseax/I8RKABPJtHqKtW0GpyMPPdj9avmK5y/b+H9IhYbLOM+hIyahuNGsbdzLHCFPX5eKvw28iJ82ar3e7YRn86i7bIZmXd2VQKMcCsO4usZGTzUurXsVnG7u3T9a5zS7mXVNXLNxGgyEraELmMp20PTvBCeRpmrXe7E32ZyCOq4U4/Wm6ZqOoRXSSLczFyfmDOSGHcHPUUtg39leGLjcNs9+fKiTvtz8zfTHH41SuLsadpdzfHgwRHbn+90H611RVkcsndnNatDb3ct1EmPLSVgnPQA8CsXTJpLacxS54PFVdL1QglZSSSc5J61feWKRxIo59ahkm6IXvmQRgbscsTgADuaqyWmmCJ3tEiublDtM1yf3YP+yvc57EH6dcXIdOvbvQJpLMXA27WkMKF2x3wOBnngZzxk44qvq5sLySCFNNnhbZudnYLuYAckkYVvUcenPFXFK1xvQhiuLy5a0jttTeOMRkzyW+IolIY+hH8OOMD+tdF4fhmvdeZLiT7daOjhIp180oRyM5HHHcY/Csmwgu7/AFB7TS96wjFuJo4QxlI6uWx0znHTjHeuo0rw7J4euTf6nfStdygx20auXLZ6jGBls+nA681aJO80ZLO1sEt7W1W2iXBEajjnv6n61pGQZwKTTvD81lo8st0FW7lYSGNDkRqBwme56596h3fTFcVVWloddJ3QO655zUbNz1pGdehOD7UDYTisWa3PMILwsS6PjA7+lNmv5rUAtiW2c4IYZAPoawJUutMkKuGCg9fWr0N8lzFtIyxGOehrrOEfNpUN4DcabiOTqYC3B+npVKC8eKQxShkZTyrcEUrGS0bzI2Ywk8NnlT6GrdxDFqkSvwtwq4V/X2PrTA19J1YwXEbocEYOT7V63o2rR3sKOjghhzg9DXz5Dcy20zRTZWReoP8AOux8N6+2nTglsxOeR/WnF2Ez3SGTmrIbjisXTb2O8tUkjYHjrWpE+RirYkch8QfBkHirSjtAjvYvmhlHUH0+hryTQ9buLO8k0rVFMV9bnayt/GPWvo51DKRXmPxH8BrrkP8AaFgPJ1OAZjkXjd7GspQUkbQqOJXt7yKVVzjmrR+zbCTtJ9e9eNw+J7zT5jbX0bw3MZ2sCMCtBPGTEAeZ+tczptHSp3PS3ljI24UfhUe1M9B7GvOx4sOch8ml/wCEv2g7pOaXKyudHeXLwRqcsOPSuV1rV4oVZQe1c5deJppz+7J5rHubqSQF3bJqlATn2MzW7x7q6AJOB2rp/AGlCS5Ms52RY3ux/hUVyFvC19qKpyQTz9K9L02yA0CdFXEomUZHptPH511wWiRySd22S3N9/aGtPPGcQoAkcf8AcXsP61leKLsSQLpqHORvlx+gqxolhKLu7CK807OojjHc/wBK6fRPAUNuz3utOLu6dt5jB+Rfb3qpOysZnjVtomq3RDWen3U/zbV8qFmyfbArufDnw413U9suoQyabajq0yESH6KefxOK9ejWKCNI41WNF4UKMbfwrRg1yWFPJutt3B02P94D2Pas3JtaFRavqcPLN4f0PToIk1qWO73+VPbEIAoXuQduTwD78fWrwu2uE8+DVfDkiSuq+ZPK0RUk8LjDf5Faur+DNN8Qq95p7K+OZIyB5if4iudfwFIoxHcMFBDLlFOCOnUVn7aUNGjZUoz1TO5s/Burzwg32s21vGRwLCDJx/vPkf8AjtcHrUll4W1O4jKy3moJw08z5+U9Mu3Cj2HPoKm1TxN4h8N6N9likDhGwMrwF9R6fSuI8YaDqMj2N9caxaahNcpvkSOT5bcHkZJ4PH0ralPmMakHF2O70f4ha7q+mvb6fpZvJ7bIa4TIjCgcZLY5xxz1x0rWtbqd7aMylPN2jft6Z74rySxvrrQbaWztb+Znuiu+KM7VJHTA69+px1716Fb6jKLGFbqMxXOxfMRhgg4/SsqyNaDWptPKRnJFCXJxxx71z/8AbEZ4c55pw1qEcbuP5VhY35kZ8yx3CbZUEinqprm9S8Pm1ZriwJCjkxnqK2Zt0ZOchuetQ/ajwCeetdJxGLbXPmgpIo8wjBU9GHpTZSbGRZYstbse+flPoa1JLeG5bzYwFkz6YB/+vVbruidf3b53qRxQBHfQJq1oHQAXMY/dsO/sazLDUWSXypgVdDgg9jU6NJp12sJO6KTmNj3Hp9aZrVp5if2jbDEqD96oH3h6/WmB6V4J8SfZbhIJX/cPwpPavWInBAKng18waTqG5EZWOR+AFe0+CvEwv7YWU7/v4xlSf4lq4voJnoUZyMGoL4wQWsk9xIkcSLlmc4AFQSX8VnbSXNw4SKJSzMfQV4X428Y6l4ouyke6LTEP7uFT97/ab1P8qdtQE8aJoHibVfLtQUJJX7XjAB7HHcV51qnhjV9GJa4t2eD+GeL5kP4jp+Nb9pM8E6yABsdm6VvrrszIAmYWx0UfKfqOlJxuUpNHmKs3vmpcM1ehvpdhqDCSfTYVc8loSY8/gOKbP4MtJwDamaFv7rYYVDpSNVUj1OGjQgc1DfSbYiBXW3HgnWYnQQQG4DnAKAjH1zU7/CzWrl1EtxawqeTlySPyFQou+o3JWMXwPoz3TPdlc5bYtetafoSxweWwwpOT707w/wCH7Pw7psFtuEssY+Z8YGe5rSknyc4O0dO1a83YwbEt7e009GFtGibzlmHU/WmvK527TtB5yTxULThgQpBbt+NVDdKmH3HaM4wfw/z+tQIvSMNg3NzzyOuazzesvVvl7d81BcS7uxAYAYz0/wA/59aquXZcEEjrj/PX+vvQBq2Wsz2Vz9pt5SrLznrnnoa7aK+ttW04X9uApztmjH8Df4GvKZZSD8xOOpBrQ0TXm0nUNzNvtpsJNGO6+o9x/SlKPMrFwlyu50GvRR3Fu6lQcjvXkGpWMsf2qRL9IGhOI4hkyOfb0GD1JFes6nIArYkDr1DDoR2NeTeIY45NUO66jgVl3FnBPTsAOp5qaWjsbVdYmLawXdu6XjTG1ZDuXDfPn/P0/Gt+yvbqO2LT70DndGWBG4eoz1HvXIMJXBkurgLCOFLdSPZf8itB/MMUEkdykskigleSVGOMnpn27VvUSaOenozYn1BlbdnGeuKoza1IjEBs/SmRabcXBG92I9K0I9DAGStYuxvqz0uWxSZcNLC6noSefzrD1Dw9MGaS3Icg/cB5/D1on8U6apOLWNzjrz/TFQJ4usm6W0YweDk/0NUYGMZ2gmaGVGRgejdRVpcXSgA/N/P/AOvWpNqOk6vCqXMJDgcOrcj6Z61mtpM0bGSymF0g5GzhgP8Ad/wpgVriFbiB7aYEH+Fv7p7GqVndOkjW0/ysnysK1PN89SCoV14PGM1matFhY71AQ8R2yf7S+v4UAYl9CdI1DMJ/0WU5XHb2ro9F1mW0liuYJMOpDA+tVnWPU7FkYDBGVPoaxofNs5fLkLY6UxHqHi/xqNS8PW1nbMUef/j4X0x2+hNctpYLsFxkd6yyfPQZOWHStrQFL3Uca4y7Ac9q0jK4G6vh+C7TcF2v6in2vhOdp9m5AmMl24xXUiwFkisJAy+uMVNIQyBlI+UHPvQ5aXQGVF4e+zrjzVkA9BiprVkjm8uKL5x/EwqC61KS2cM27YeoqV7sS2rPbkNNjp3x7e9ZubYGl9pLHAPzAc+1MF66YUgBj36msC21B1kb5htP3s9jWrFPHK2SRntnpUgXS6TRBiBk/nWbdp5Q/eEFT+OP8/5xSzTBJcA7SRnOOKpm7WVGHTI+9nvQA2ViZGBBVTnHrn/P/wCo1TlJZVOSdvIP0+n+PHqOlOkdWUhyFC9xj/P9PY1VZgMZOc9znr2/z19AKAJnY7s5GCOewx/kf/WPWqjzGNyyMr5OBk9f8/5z0pjy7R8q8nsf15P+fUnpVIzlX4b7w/H/AD/njpQBJJcgKWI5PB46f5/z6VWluMMMHkDOQc/5/wA/SopJwdwJx+v+f8/SqUsy56nOcZNMDet9XY2ZtmfJjHy/SuM1W5t7vVoo2DuFzuCd/QdRVxpAMkMckFc5rLsdEububzNxXJ64pWSdzVSclYoS2sAvH3KZJCxKxRnIUdgTjH6V1Gk6XJPGm+FYx/dUVq6V4XSDkJlzyWPU101tpflAEVEp3LjBIzbXSljXG2nXMC26k8Yrd8kCMr3rJ1H/AFDLxuArJs2ijzy10O/vW2BWbI61qr4NvEUEtj2716OLYFVWMKqjoOmBUgs12gNJu9u9dBxHmI0O5iU7WqWCa9s26Nx69K9NTT4uyLkDvSPo9vMDmKMk9RtoFc4mOeLUYcXICykYEo4P4+tULmI20pin5Vu45DL6iuyn8Kxly0JKkfwnpWRqekXD23lyptZf9U+eAfT8aBnEW8raffPaM2UPKE91qzdWyTASqByORXZeGrLSJrUJd2UU93yHMozs56Cugh0bRraYvFYx7j90MSwH4HimK55XDbT9RC7emFra0XSNXbVba5tICLcOPOMgIXHqPevUYpURc55A+VQMKtQXN1vXkg/0pXC5WiuvNRraXtTotsVuyq2STzuNZcr7py54K9+lMN0UcHhfT0NACaksroV2nB6HBrn7e9l025MMpO0nhjXST6rGoZGXdjv2rm9UYXKExggg8fSgDcd4LpDPGxzt+bHr61Tg1AW7sueMjvWHpepPFKqsTgHBz3q/f24WDzYuY2OSAfu0AdGkq3UIXcCQMg1nNG8D/KSAMnis6w1ArJjAX2962GZbtVk6kcFc4B96AK0szbBID+H+f6VSlmLx8nIAIUA8dc/5xx6mn3QKsBwmOMc8e9UGmbILHpjGf/r/AOfQUAK9z84JP3j6/l/n8h3qpJIoG4nLd+en+f8APuTvmRiCvzdu/v8A5/nWbI+1jnIwaYE0spZzu49h/n/P8q7uzcluSfWo2lIOec+5pkbme4WBTyT8zelF7DSuy9p9o15OEA4zzXbWOmRwKqlB+VVtA01YYxJjmukSMZyMVjJ3Z0xjyoIrdFUdhSzSLFGegxUE14iKcnBHauf1DWlYhA31pWHY03vUWMsT07Vz1/qHmbsHgd6yb/WlJ2BuPaqMdy90Sx4iTkk01Erm7Hry9MY3NnIpZZoIMKzAtjpnrVR71mH+jjavqepqh5X2qYgS4UcuxOcVqcRqJqE11N5VmgI7t/8AXq7GoiyZZmkbGW5wAK5vVfEFrpFmUjYxoBkn+I+9Qafq0tz4WlvZG2tcE7c9do4H6g0AQ6t4kv7rWE07SF2ZYAyf1JrcllntIEhieS8n6MX9fwrjdKkaC8Sds/Me1drBeBFMgXDMOvegCBbR0zPcRRRXB5ZUA/UjGTTN52FiDvz0Jq1PLiJmkwCBnjpWTcMflO4/Mc57CgDSS6bbl+V/ixTZZl2MyYYjnr1FZ0bKs21RkEelSOTvxGD6EZ70AGSVkcsORt9apySbvl/hX2qy+YoyT1Y5NZkt1iQqpxmgBzfvnI7dajaBWDDJA9O9Srh1JY8e386jkcr8hPAGQaAOd1GL7HL5se4jPIJrW0rUklQB8MrDaynt/hUV0N8ecZ56+tYWTbXHDAA0Abmo2xs5d8T7ojypFWdN1Er+7LYBIzRaXMdzaGKYAx471SvLJ7VkkQ/KwyrDv9aYG7dRi4iWVG6elYdxuRSNwAPTnpUlnqisPLLYPf3qW7t1cBhjB5yR2oAy3cyR5BbpyP51mTybH3EHBPGea0ZQqEqWAHUE1kXT75Nkec0MaVyrf6m0YCR/ePGewrU8NwGW4iU8knJJ71k3ljst8nk9a6zwha73jfjOKiT0OiEbM7qE+Ta7kHzIM49R3FZmq68LSzaaNsYwQauaq01hZi6TmNTh19vWvMNe1ETk20T5Xdk47e1RGNzSbUUa2oeKvOzhuvpWHJqE1yflbaD1PeqFvArH5hmtq1gUYKoB+Fa2SMbt7kVrp3mMGfeR796taqRa6TKF2rxtAHvxVwHy1zWZqytd2xXdjac49aIq8kE3yxZ6VJugRYhuMjfLjrWfqupQ6bYtErgkDLsD941ZmmYK8owH2nnFed+KryYxspbimjA0NEtJvFGoyXdwGktoTtQHozV1+q7oNNW3jAEUeFUDisnwP+48Ko0fBZuT+NaOpL/om7JzQwK9rCFiiwATyenetlZGYorDHHWs6D/j3j/D+lXopG2Hp0H86QFyWT9wRtOAO561ivKxJDfX6VcumLQ8nr1qiQNjcDpSAfHKM7z16fWraSu7YjAUYznHpWajsDx6VciJwWycnr+lADbp/lA7g4LD1rOJw/HH+NT3UzuWLYzzVNflYsOuKYE7SEdlB7n0qCSXd1ww7GkP+q3d81XEjEEE8UAEzEptAJHrWTep8u4DleSRWq7FULA84NULn7h4FMBmmyhn2kn0xU8uq/Z7p7Sf5ojxisne0V18hxSeIvlu7eQfekiDN7mgCxqVs8ZEsDHafusOhqC31yeOPyJgeOhrT0eUzWbxSBWVRuGRyDWdfQRic4FAFS+1R2eNF4LtgZ7e9aGm2huZRxk1hXoH9o247Zru/DESHqO1RN2R0QiZWvWv2eyaQqcKOa2PBZ3CMg8YBo8XxqNKmAHG01D4JYiCHB/gWoesTVL3jvdYhWfSJ488NGQfyrw2OMZO7k17Xr8jx+H7h0Yq3lnp9K8cCjJqobE1FqSQIAeuK0o3CDg1mglelKZGweasnYuz3oVeayV1B2naIjOWIqKaRjOik8bqoRO32snPO41rTRz1JXdj/9k=",
  "imageHeight": 300,
  "imageWidth": 240

标注信息获取

  分析【关键点标注信息展示】的信息,我们可以得到其组成为version 、 flags 、 shapes 、 imagePath 、 imageData 、 imageHeight 、 imageWidth 。 其中的【version 、 flags】 为固定信息,【shapes】中的信息为标注的关键点信息 , 【imagePath 、 imageData 、 imageHeight 、imageWidth】分别为图像名称 、 图像Base64编码字符串 、 图像的高 、 图像的宽。而在【shapes】中的信息仅label和points是变动的,分布代表类别和坐标点。

关键点检测

  既然需要制作人脸关键点数据集,所以人脸关键点的检测是必不可少的,我们仍然是通过开源项目进行人脸关键点检测。在这里我们选择的是人脸关键点较少的开源项目检测:【mediapipe】在这里大家可以翻阅我往期关于【mediapipe】介绍。例如:

  1. 【特效】对实时动态人脸进行马赛克及贴图马赛克处理及一些拓展
  2. 【姿态估计】从理论到实践逐步分析讲解传统姿态估计算法
  3. 【实操:人脸矫正】两次定位操作解决人脸矫正问题
  4. 一起来学MediaPipe(二)人脸面网格
  5. 一起来学MediaPipe(二)人脸面网格

在这一步骤中我们核心目的是为了使用mediapipe包对人脸关键点检测后输出:

shell

复制代码

import cv2
import mediapipe as mp
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
def get_face_info(image):
    image.flags.writeable = False
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    results = face_detection.process(image)
    facial_axis = None
    if results.detections:
        for detection in results.detections:
            facial_axis = detection.location_data.relative_keypoints
    return facial_axis
def AxisTransformation(w, h, img_fa):
    # 左眼
    left_eye = [img_fa[0].x * h, img_fa[0].y * w]
    # 右眼
    right_eye = [img_fa[1].x * h, img_fa[1].y * w]
    # 鼻子
    nose = [img_fa[2].x * h, img_fa[2].y * w]
    # 嘴巴
    mouth = [img_fa[3].x * h, img_fa[3].y * w]
    # 左耳
    left_ear = [img_fa[4].x * h, img_fa[4].y * w]
    # 右耳
    right_ear = [img_fa[5].x * h, img_fa[5].y * w]
    points = [[left_eye], [right_eye], [nose], [mouth], [left_ear], [right_ear]]
    labels = ["left_eye", "right_eye", "nose", "mouth", "left_ear", "right_ear"]
    return points, labels

image信息获取

  通过关键点标注分析我们可以获得在image信息中需要填入的信息,其中图像的尺寸和名称较为轻易获取,我们在批量读取图像的时候通过for循环可以解决,在这里我们着重解决BASE64编码字符串的获取问题:

shell

复制代码

def get_imageData(img):
    # 将图像数据转换为Base64编码字符串
    image_data_binary = cv2.imencode(".jpg", img)[1].tobytes()
    image_data_base64 = base64.b64encode(image_data_binary).decode()
    return image_data_base64

shapes信息获取

  由于一张图内的关键点往往不是一个,是需要多个关键点组合而成的,我们从上述的分析中也可以得到shapes信息中改变的也仅仅为lebel和points信息,而group_id、description、shape_type和flags参数爆出不变。同时每个关键点的信息也都是有如下关键信息所示,我们可以这样定义一个函数进行获取shapes信息:

shell

复制代码

def get_shapes_data(points, label):
    info = {
      "label": label,
      "points": points,
      "group_id": None,
      "description": "",
      "shape_type": "point",
      "flags": {}
    }
    return info

生成标注文件

在批量生成标注数据时,我们假定是通过文件夹中的图像进行处理,基础逻辑流程为:


image.png image.png image.png

image.png

可以通过下面这段代码实现上述逻辑,我们使用四大天王的照片进行测试实验:

shell

复制代码

if __name__ == "__main__":
    img_path = "./img/"
    with mp_face_detection.FaceDetection(model_selection=0,
                                         min_detection_confidence=0.5) as face_detection:
        for name in os.listdir(img_path):
            src_img = cv2.imread(img_path + name)  # 读取原始图像
            facial_axis = get_face_info(src_img)  # 五官坐标集
            if facial_axis is not None:  # 判定关键点坐标是否存在
                Height, Width, _ = src_img.shape
                imageData = get_imageData(src_img)  # 获取图像的imageData信息
                # 标签的基础信息
                json_base = {
                    "version": "5.2.1",
                    "flags": {},
                    "shapes": None,
                    "imagePath": name,
                    "imageData": imageData,
                    "imageHeight": Height,
                    "imageWidth": Width
                }
                points, labels = AxisTransformation(Height, Width, facial_axis)  # 获取关键点坐标, 类别名称
                # 获取关键点信息
                shape_infos = []
                for epoch in range(len(points)):
                    shape_info = get_shapes_data(points[epoch], labels[epoch])
                    shape_infos.append(shape_info)
                # 对基础款进行修改
                json_base["shapes"] = shape_infos
                json.dump(json_base, open('./img/%s.json' % name[:-4], 'w'), indent=2)

生成后观察文件夹下图像及标注文件:


使用labelme检验标注结果:


结语

  周五了,匆忙中实现了一个人脸关键点数据集的快速制作脚本,仅以此篇以飨读者!这样大家可以快速制作自己的关键点数据集了,大家也可以使用Dlib包制作自己的人脸关键点或者其他开源项目制作自己的关键点数据集。


相关文章
|
机器学习/深度学习 PyTorch 算法框架/工具
如何将模糊照片人脸恢复清晰,GFPGAN机器学习开源项目使用 | 机器学习
如何将模糊照片人脸恢复清晰,GFPGAN机器学习开源项目使用 | 机器学习
如何将模糊照片人脸恢复清晰,GFPGAN机器学习开源项目使用 | 机器学习
|
6月前
|
人工智能 计算机视觉 Python
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(1)
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(1)
|
2月前
|
机器学习/深度学习 计算机视觉 Python
目标检测笔记(三):Mosaic数据增强完整代码和结果展示
本文介绍了Mosaic数据增强技术,通过将四张图片拼接成一张新图,极大丰富了目标检测的背景信息。文章提供了完整的Python代码,涵盖了如何处理检测框并调整其位置,以适应拼接后的图像。Mosaic技术不仅提高了学习效率,还在标准化BN计算时同时考虑了四张图片的数据,从而提升了模型的泛化能力。
167 1
|
2月前
|
机器学习/深度学习 算法 PyTorch
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-7.0版本进行目标检测的完整流程,包括算法介绍、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。YOLOv5以其高精度、快速度和模型小尺寸在计算机视觉领域受到广泛应用。
1029 0
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
|
2月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
321 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
6月前
|
计算机视觉
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(2)
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】
|
7月前
|
机器学习/深度学习 编解码 并行计算
深度学习的图像超分技术综述-输入单张图像(SISR)和输入多张图像的基于参考的图像(RefSR)
深度学习的图像超分技术综述-输入单张图像(SISR)和输入多张图像的基于参考的图像(RefSR)
360 0
|
XML JSON 算法
计算机视觉,算法应用自定义数据集制作
计算机视觉,算法应用自定义数据集制作
135 0
|
计算机视觉
【项目实践】基于Mask R-CNN的道路物体检测与分割(从数据集制作到视频测试)(二)
【项目实践】基于Mask R-CNN的道路物体检测与分割(从数据集制作到视频测试)(二)
86 0
|
算法 计算机视觉 网络架构
【项目实践】基于Mask R-CNN的道路物体检测与分割(从数据集制作到视频测试)(一)
【项目实践】基于Mask R-CNN的道路物体检测与分割(从数据集制作到视频测试)(一)
202 0

热门文章

最新文章