【项目实践】基于Mask R-CNN的道路物体检测与分割(从数据集制作到视频测试)(二)

简介: 【项目实践】基于Mask R-CNN的道路物体检测与分割(从数据集制作到视频测试)(二)

5、基于表征学习的ReID方法实践


   本项目基于以上说明的论文进行实践,数据集时Market1501数据集。针对论文中的Baseline网络GoogleNet进行了替换,实践的Baseline网络为ResNet50模型,同时使用了与训练的方式对论文进行了实践。


5.1、数据集制作软件配置

e033342f0ba5ff33530caf5f725cb035.png

4aa16b4ab332901e73e3243ac0635d3e.png


5.2、 数据集制作

4ce2400125995e6f7d6f3b4960a5017d.jpg

标注完成后执行如下指令:

e4ad47022fcce1d42b26dc8ab646dedd.png

执行上图的指令后,更改如下数据集得到类似coco数据集的属于自己的数据集:

d47e7bccdc3c2fb8e7850e8fb2ae786b.png


5.3、数据增广

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import random
import torch
import torchvision
from torchvision.transforms import functional as F
class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms
    def __call__(self, image, target):
        for t in self.transforms:
            image, target = t(image, target)
        return image, target
    def __repr__(self):
        format_string = self.__class__.__name__ + "("
        for t in self.transforms:
            format_string += "\n"
            format_string += "    {0}".format(t)
        format_string += "\n)"
        return format_string
class Resize(object):
    def __init__(self, min_size, max_size):
        if not isinstance(min_size, (list, tuple)):
            min_size = (min_size,)
        self.min_size = min_size
        self.max_size = max_size
    # modified from torchvision to add support for max size
    def get_size(self, image_size):
        w, h = image_size
        size = random.choice(self.min_size)
        max_size = self.max_size
        if max_size is not None:
            min_original_size = float(min((w, h)))
            max_original_size = float(max((w, h)))
            if max_original_size / min_original_size * size > max_size:
                size = int(round(max_size * min_original_size / max_original_size))
        if (w <= h and w == size) or (h <= w and h == size):
            return (h, w)
        if w < h:
            ow = size
            oh = int(size * h / w)
        else:
            oh = size
            ow = int(size * w / h)
        return (oh, ow)
    def __call__(self, image, target=None):
        size = self.get_size(image.size)
        image = F.resize(image, size)
        if target is None:
            return image
        target = target.resize(image.size)
        return image, target
class RandomHorizontalFlip(object):
    def __init__(self, prob=0.5):
        self.prob = prob
    def __call__(self, image, target):
        if random.random() < self.prob:
            image = F.hflip(image)
            target = target.transpose(0)
        return image, target
class RandomVerticalFlip(object):
    def __init__(self, prob=0.5):
        self.prob = prob
    def __call__(self, image, target):
        if random.random() < self.prob:
            image = F.vflip(image)
            target = target.transpose(1)
        return image, target
class ColorJitter(object):
    def __init__(self,
                 brightness=None,
                 contrast=None,
                 saturation=None,
                 hue=None,
                 ):
        self.color_jitter = torchvision.transforms.ColorJitter(
            brightness=brightness,
            contrast=contrast,
            saturation=saturation,
            hue=hue,)
    def __call__(self, image, target):
        image = self.color_jitter(image)
        return image, target
class ToTensor(object):
    def __call__(self, image, target):
        return F.to_tensor(image), target
class Normalize(object):
    def __init__(self, mean, std, to_bgr255=True):
        self.mean = mean
        self.std = std
        self.to_bgr255 = to_bgr255
    def __call__(self, image, target=None):
        if self.to_bgr255:
            image = image[[2, 1, 0]] * 255
        image = F.normalize(image, mean=self.mean, std=self.std)
        if target is None:
            return image
        return image, target

5.4、FPN网络模型

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn.functional as F
from torch import nn
class FPN(nn.Module):
    """
    Module that adds FPN on top of a list of feature maps.
    The feature maps are currently supposed to be in increasing depth
    order, and must be consecutive
    """
    def __init__(
        self, in_channels_list, out_channels, conv_block, top_blocks=None
    ):
        """
        Arguments:
            in_channels_list (list[int]): number of channels for each feature map that
                will be fed
            out_channels (int): number of channels of the FPN representation
            top_blocks (nn.Module or None): if provided, an extra operation will
                be performed on the output of the last (smallest resolution)
                FPN output, and the result will extend the result list
        """
        super(FPN, self).__init__()
        self.inner_blocks = []
        self.layer_blocks = []
        for idx, in_channels in enumerate(in_channels_list, 1):
            inner_block = "fpn_inner{}".format(idx)
            layer_block = "fpn_layer{}".format(idx)
            if in_channels == 0:
                continue
            inner_block_module = conv_block(in_channels, out_channels, 1)
            layer_block_module = conv_block(out_channels, out_channels, 3, 1)
            self.add_module(inner_block, inner_block_module)
            self.add_module(layer_block, layer_block_module)
            self.inner_blocks.append(inner_block)
            self.layer_blocks.append(layer_block)
        self.top_blocks = top_blocks
    def forward(self, x):
        """
        Arguments:
            x (list[Tensor]): feature maps for each feature level.
        Returns:
            results (tuple[Tensor]): feature maps after FPN layers.
                They are ordered from highest resolution first.
        """
        last_inner = getattr(self, self.inner_blocks[-1])(x[-1])
        results = []
        results.append(getattr(self, self.layer_blocks[-1])(last_inner))
        for feature, inner_block, layer_block in zip(
            x[:-1][::-1], self.inner_blocks[:-1][::-1], self.layer_blocks[:-1][::-1]
        ):
            if not inner_block:
                continue
            inner_top_down = F.interpolate(last_inner, scale_factor=2, mode="nearest")
            inner_lateral = getattr(self, inner_block)(feature)
            # TODO use size instead of scale to make it robust to different sizes
            # inner_top_down = F.upsample(last_inner, size=inner_lateral.shape[-2:],
            # mode='bilinear', align_corners=False)
            last_inner = inner_lateral + inner_top_down
            results.insert(0, getattr(self, layer_block)(last_inner))
        if isinstance(self.top_blocks, LastLevelP6P7):
            last_results = self.top_blocks(x[-1], results[-1])
            results.extend(last_results)
        elif isinstance(self.top_blocks, LastLevelMaxPool):
            last_results = self.top_blocks(results[-1])
            results.extend(last_results)
        return tuple(results)
class LastLevelMaxPool(nn.Module):
    def forward(self, x):
        return [F.max_pool2d(x, 1, 2, 0)]
class LastLevelP6P7(nn.Module):
    """
    This module is used in RetinaNet to generate extra layers, P6 and P7.
    """
    def __init__(self, in_channels, out_channels):
        super(LastLevelP6P7, self).__init__()
        self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
        self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
        for module in [self.p6, self.p7]:
            nn.init.kaiming_uniform_(module.weight, a=1)
            nn.init.constant_(module.bias, 0)
        self.use_P5 = in_channels == out_channels
    def forward(self, c5, p5):
        x = p5 if self.use_P5 else c5
        p6 = self.p6(x)
        p7 = self.p7(F.relu(p6))
        return [p6, p7]

5.5、图片测试结果


5.6、视频测试结果展示


参考:

https://zhuanlan.zhihu.com/p/37998710

https://zhuanlan.zhihu.com/p/25954683

https://zhuanlan.zhihu.com/p/66973573

https://github.com/facebookresearch/maskrcnn-benchmark

相关文章
|
27天前
|
安全 Linux 测试技术
提升龙蜥内核测试能力!探究持续性模糊测试优化实践
清华大学软件学院对Anolis OS使用靶向模糊测试方法将测试工作引向修改的代码,进而提高对业务代码的测试能力。
|
1月前
|
SQL 搜索推荐 测试技术
【Havenask实践篇】完整的性能测试
Havenask是阿里巴巴智能引擎事业部自研的开源高性能搜索引擎,深度支持了包括淘宝、天猫、菜鸟、高德、饿了么在内几乎整个阿里的搜索业务。性能测试的目的在于评估搜索引擎在各种负载和条件下的响应速度、稳定性。通过模拟不同的用户行为和查询模式,我们可以揭示潜在的瓶颈、优化索引策略、调整系统配置,并确保Havenask在用户数量激增或数据量剧增时仍能保持稳定运行。本文举例对Havenask进行召回性能测试的一个简单场景,在搭建好Havenask服务并写入数据后,使用wrk对Havenask进行压测,查看QPS和查询耗时等性能指标。
65386 6
|
2月前
|
安全 测试技术
测试团队的一次复盘实践
测试团队的一次复盘实践
147 0
|
1月前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到&quot;hand.txt&quot;文件。
|
1天前
|
jenkins 测试技术 持续交付
深入探索软件测试中的持续集成与自动化测试实践
【4月更文挑战第27天】 在当今软件开发的快速迭代过程中,持续集成(CI)和自动化测试已成为确保代码质量和加快交付速度的关键因素。本文将探讨如何通过实施持续集成流程,并结合自动化测试策略来优化软件测试工作。我们将分析持续集成的原理、自动化测试的最佳实践以及如何将这些方法应用于实际项目中,旨在为读者提供一套完整的解决方案,以提高软件项目的效率和质量。
10 3
|
1天前
|
Web App开发 IDE 测试技术
深入理解自动化测试框架Selenium的设计与实践
【4月更文挑战第27天】在软件开发周期中,确保代码质量和功能正确性至关重要。随着敏捷开发的普及和持续集成/持续部署(CI/CD)的实践,自动化测试已成为现代开发工作流程的核心部分。本文将探讨一个广泛使用的开源自动化测试工具——Selenium,并剖析其设计原理、架构以及在实际中的应用。我们将通过具体案例分析,展示如何有效利用Selenium进行跨浏览器测试,并讨论在真实环境中可能遇到的挑战及解决方案。
|
4天前
|
人工智能 监控 数据处理
【AI大模型应用开发】【LangSmith: 生产级AI应用维护平台】1. 快速上手数据集与测试评估过程
【AI大模型应用开发】【LangSmith: 生产级AI应用维护平台】1. 快速上手数据集与测试评估过程
20 0
|
12天前
|
敏捷开发 监控 前端开发
深入理解自动化测试框架Selenium的架构与实践
【4月更文挑战第16天】 在现代软件开发过程中,自动化测试已成为确保产品质量和加快迭代速度的关键手段。Selenium作为一种广泛使用的自动化测试工具,其开源、跨平台的特性使得它成为业界的首选之一。本文旨在剖析Selenium的核心架构,并结合实际案例探讨其在复杂Web应用测试中的高效实践方法。通过详细解读Selenium组件间的交互机制以及如何优化测试脚本,我们希望为读者提供深入理解Selenium并有效运用于日常测试工作的参考。
|
12天前
|
自然语言处理 测试技术 API
深入理解自动化测试框架Selenium的设计理念与实践
【4月更文挑战第15天】 在现代软件开发过程中,自动化测试已成为确保产品质量和加速迭代的关键手段。Selenium作为一种广泛使用的自动化测试框架,提供了对多种浏览器和平台的支持,极大地促进了Web应用的功能测试。本文旨在剖析Selenium的核心设计理念,探讨其在实际项目中的应用,并指出常见的误区及最佳实践,以期帮助测试工程师更高效地利用Selenium进行测试工作。
|
21天前
|
安全 测试技术
深入理解白盒测试:方法、工具与实践
【4月更文挑战第7天】 在软件开发的质量控制过程中,白盒测试是确保代码逻辑正确性的关键步骤。不同于黑盒测试关注于功能和系统的外部行为,白盒测试深入到程序内部,检验程序结构和内部逻辑的正确性。本文将探讨白盒测试的核心技术,包括控制流测试、数据流测试以及静态分析等方法,同时介绍当前流行的白盒测试工具,并讨论如何在实际项目中有效实施白盒测试。文章的目标是为软件测试工程师提供一份综合性指南,帮助他们更好地理解和应用白盒测试技术。

热门文章

最新文章