深度学习的图像超分技术综述-输入单张图像(SISR)和输入多张图像的基于参考的图像(RefSR)

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: 深度学习的图像超分技术综述-输入单张图像(SISR)和输入多张图像的基于参考的图像(RefSR)

前言

输入为单张图像和多张图像:

SISR方法输入一张低分辨率图像,利用深度神经网络学习LR-HR图像对之间的映射关系,最终将

LR图像重建为一张高分辨率图像。

RefSR方法借助引入的参考图像,将相似度最高的参考图像中的信息转移到低分辨率图像中并进行两者的信息融合,从而重建出纹理细节更清晰的高分辨率图像。


一、SISR模型统计

Table 1 SISR model statistics

模型算法 超分框 上采样方式 网络模型 损失函数 优点 局限性
SRCNN 前采样 三立方插值 卷积直连 MSE损失 首次将深度学习引入超分领域,重建效果超过传统算法 训练收敛慢,只能完成单一尺度放大,重建图像平滑
FSRCNN 后采样 转置卷积 卷积直连 MSE损失 速度较SRCNN提高,实时性得到提高 依赖于局部的像素信息进行重建,有伪影产生
VSDR 后采样 三立方插值 残差网络 MSE损失 实现多尺度超分放大 对图像进行插值放大再计算,导致巨大的计算量
ESPCN 前采样 亚像素卷积 卷积直连 MSE损失 网络效率提高,提出了亚像素卷积放大方法,灵活解决了多尺度放大问题 重建图像有伪影
SRResNet 后采样 亚像素卷积 残差网络 MSE损失 解决深层网络难训练问题 重建图像光滑
SRGAN 后采样 亚像素卷积 残差网络 感知损失 提高图像感知质量 模型设计复杂,训练困难
LapSRN 渐进式 三立方插值 残差网络 L1损失 产生多尺度超分图像,网络拥有更大的感受野 重建质量不佳
EDSR 后采样 亚像素卷积 残差网络 L1损失 增大模型尺寸,降低训练难度 推理时间长,实时性差
SRDenseNet 后采样 转置卷积 残差、稠密网络

MSE损失

减轻梯度消失,增强特征传播能力 对所有层进行连接,计算量大
RDN 后采样 亚像素卷积 残差网络 L1损失 增加网络复杂度,提高主观视觉质量 采用了稠密连接,计算量大
RCAN 后采样 亚像素卷积 残差、注意力机制网络 L1损失 通过注意力网络使模型专注于高频信息的学习 引入通道注意力机制的同时,将各个卷积层视为单独的过程,忽略了不同层之间的联系
ESRGAN 后采样 亚像素卷积 残差、稠密网络 L1损失 更稳定的GAN模型,重建高频纹理细节 模型设计复杂,训练困难
SAN 后采样 亚像素卷积 残差、注意力机制网络 L1损失 提出了二阶通道注意力模块,增强了模型的特征表达和特征学习能力,利用非局部加强残差组捕捉长距离空间内容信息 计算成本高
SRFBN 后采样 转置卷积 递归、残差、稠密网络 L1损失 引入反馈机制,前面层可以从后面层中受益

通过迭代的方式虽然减少了参数,但是每次迭代都会计算loss和重建图像,计算量大

CDC 渐进式 转置卷积 递归、残差、注意力机制网络 梯度加权损失 提高真实世界图像重建质量,对图像不同区域进行针对性训练 训练复杂,计算量大
HAN 后采样 亚像素卷积 残差、注意力机制 L1损失 学习不同深度之间特征的关系,提高特征表达能力 对不同层、通道和位置之间的特征信息进行建模,参数量多,计算量大
SRFlow 后采样 亚像素卷积 残差网络 对抗损失、内容损失 克服了GAN模型易崩溃的问题 生成多张近似的图片,计算量大
DFCAN 后采样 亚像素卷积 残差、注意力机制网络 对抗损失 提升显微镜下超分重建图像质量 设计复杂,专用于显微镜超分
LIIT 后采样 亚像素卷积 残差网络 L1损失 连续表达学习,实现30倍的放大图像 生成图像光滑

二、RefSR模型统计

Table 2 RefSR model statistics

模型算法 对齐方法 匹配方法 融合方法 损失函数 优点 局限性
Landmark 全局配准 —— 求解能量最小化 —— 利用全局匹配,解决了图像内容相似但照明、焦距、镜头透视图等不同造成关联细节不确定性问题 参考图像与输入图像分辨率差距过大,影响了模型的学习能力
CrossNet 光流法 —— 融合解码层 L1损失 解决了Ref图像与LR图像分辨率差距大带来的图像对齐困难的问题 仅限于小视差的条件,在光场数据集上可以达到很高的精度,但在处理大视差的情况下效果迅速下降
HCSR 光流法 —— 混合策略融合

重构损失

对抗损失

引入SISR方法生成的中间视图,解决跨尺度输入之间的显著分辨率之差引起的变换问题 依赖于LR与HR之间的对准质量,计算多个视图差会带来巨大的计算量
SSEN 可变性卷积 —— RCAN基础网络

重构损失

感知损失

对抗损失

使用非局部块作为偏移量估计来积极地搜索相似度,可以以多尺度的方式执行像素对齐,并且提出的相似性搜索与提取模块可以插入到现有任何超分网络中 利用非局部块来辅助相似度搜索,全局计算意味着巨大的参数量
SS-Net —— 跨尺度对应网络 构建一个预测模块,从尺度3到尺度1进行融合

交叉熵损失

设计了一个跨尺度对应网络来表示图像之间的匹配,在多个尺度下进行特征融合 参考图像与输入图像的相似度直接影响生成图像的质量
SRNTT —— 在自然空间中进行多级匹配 结合多级残差网络和亚像素卷积层构成神经结构转移模块

重构损失

感知损失

对抗损失

根据参考图像的纹理相似度自适应地转换纹理,丰富了HR纹理细节;并且在特征空间进行多级匹配,促进了多尺度神经传输,使得模型即使在参考图像极不相关的情况下性能也只会降低到SISR的级别 当相似纹理较少或者图像区域重复时,不能很好地处理,计算成本高
TTSR —— 利用Transformer架构中的注意力结构来完成特征的匹配 利用软注意力模块完成特征融合

重构损失

感知损失

对抗损失

引入了Transformer架构,利用Transformer的注意力机制发现更深层的特征对应,从而可以传递准确的纹理特性 当相似纹理较少或者图像区域重复时,不能很好地处理,计算成本高
Cross-MPI —— 平面感知MPI机制 对不同深度平面通道进行汇总

重构损失

感知损失

内部监督损失

平面感知MPI机制充分利用了场景结构进行有效的基于注意的对应搜索,不需要进行跨尺度立体图像之间的直接匹配或穷举匹配 虽然解决了图像之间较大分辨率差异时的高保真超分辨率重建,但是忽略了图像之间在分布上存在的差异产生的影响
MASA —— 利用自然图像局部相关性,由粗到精进行匹配 利用双残差聚合模块(DRAM)

重构损失

感知损失

对抗损失

在保持高质量匹配的同时吗,利用图像的局部相关性,缩小特征空间搜索范围。同时提出了空间自适应模块,使得Ref图像中的有效信息可以更充分地利用 基于图像的内容和外观相似度来进行计算,忽略了HR和LR图像之间的底层转换关系
-Matching —— 利用图像的增强视图来学习经过底层变换之后的对应关系 动态融合模块完成特征融合

重构损失

感知损失

对抗损失

不仅考虑了图像分辨率差距上带来的影响,还考虑了图像在底层变换过程中导致图像外观发生变换带来的影响,使得模型对大尺度下以及旋转变换等情况都具有较强的鲁棒性 模型结构较为复杂,计算量大


相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
相关文章
|
15天前
|
机器学习/深度学习
深度学习中的正则化技术:防止过拟合的利器
【10月更文挑战第30天】本文将深入探讨深度学习中一个关键概念——正则化,它如同园艺师精心修剪枝叶,确保模型不至于在训练数据的细节中迷失方向。我们将从直观的角度理解正则化的重要性,并逐步介绍几种主流的正则化技术,包括L1和L2正则化、Dropout以及数据增强。每种技术都将通过实际代码示例来展示其应用,旨在为读者提供一套完整的工具箱,以应对深度学习中的过拟合问题。
|
14天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的地面垃圾识别分类技术
AI垃圾分类系统结合深度学习和计算机视觉技术,实现高效、精准的垃圾识别与自动分类。系统集成高精度图像识别、多模态数据分析和实时处理技术,适用于市政环卫、垃圾处理厂和智能回收设备,显著提升管理效率,降低人工成本。
基于深度学习的地面垃圾识别分类技术
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
37 7
|
8天前
|
机器学习/深度学习 算法 自动驾驶
深度学习中的图像识别技术
【10月更文挑战第37天】本文将深入探讨深度学习在图像识别领域的应用,通过解析神经网络模型的构建、训练和优化过程,揭示深度学习如何赋能计算机视觉。文章还将展示代码示例,帮助读者理解并实现自己的图像识别项目。
|
9天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的图像识别技术及其应用
【10月更文挑战第36天】在当今科技飞速发展的时代,深度学习已成为人工智能领域的一颗璀璨明珠。本文将深入探讨深度学习在图像识别方面的技术原理和应用实例,旨在为读者提供一个全面而深入的了解。我们将从基础理论出发,逐步揭示深度学习如何革新了我们对图像数据的处理和理解方式。
|
14天前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
34 7
|
11天前
|
机器学习/深度学习 算法 TensorFlow
深度学习中的图像识别技术
【10月更文挑战第34天】本文将探讨深度学习在图像识别领域的应用,并介绍如何利用Python和TensorFlow库实现一个简单的图像分类模型。我们将从基本原理出发,逐步讲解数据准备、模型构建、训练过程以及结果评估等关键步骤。通过本文的学习,读者可以了解到深度学习在图像识别中的强大能力,并掌握如何使用现代工具和技术来解决实际问题。
27 2
|
17天前
|
机器学习/深度学习 编解码 算法
什么是超分辨率?浅谈一下基于深度学习的图像超分辨率技术
超分辨率技术旨在提升图像或视频的清晰度,通过增加单位长度内的采样点数量来提高空间分辨率。基于深度学习的方法,如SRCNN、VDSR、SRResNet等,通过卷积神经网络和残差学习等技术,显著提升了图像重建的质量。此外,基于参考图像的超分辨率技术通过利用高分辨率参考图像,进一步提高了重建图像的真实感和细节。
|
24天前
|
机器学习/深度学习 监控 自动驾驶
深度学习中的图像识别技术及其应用
【10月更文挑战第20天】本文将探讨深度学习在图像识别领域的应用,包括其原理、关键技术和实践案例。我们将从基础概念出发,逐步深入到模型构建、训练技巧以及性能评估等高级话题。通过实例分析,揭示深度学习如何革新传统图像处理流程,提升识别准确率和效率。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和实用的知识。
|
12天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
23 0