【项目实践】基于Mask R-CNN的道路物体检测与分割(从数据集制作到视频测试)(一)

简介: 【项目实践】基于Mask R-CNN的道路物体检测与分割(从数据集制作到视频测试)(一)

1、内容概要


   Mask R-CNN的框架是对Faster R-CNN的扩展,与BBox识别并行的增加一个分支来预测每一个RoI的分割Mask。Mask分支是应用到每一个RoI上的一个小的FCN,以pix2pix的方式预测分割Mask。


   对Mask预测和class预测去耦合。对每个类别独立的预测一个二值Mask,不依赖分类分支的预测结果。


2、部分相关工作说明


2.1、网络结构发展

作为Faster R-CNN的进一步推进,Mask R-CNN网络的发展进程可以如下图所示:


2.2、网络结构原理

4ffa5de0e1f882bd645e034af388e2b6.jpg

   为了演示方法的一般性,作者使用多种架构来构建Mask R-CNN。

区分:

(i)用于整个图像上的特征提取的卷积主干架构;

(ii) 网络头(head) 用于对每个RoI单独应用的边界框识别(分类和回归) 和掩码预测。


网络架构:


   作者评估了深度为50或101层的ResNet 和ResNeXt网络。Faster R-CNN与ResNets 的实现从第4阶段的最终卷积层中提取了特征,称之为C4。例如, ResNet-50的这个主干由ResNet-50-C4表示。


   作者还使用了另一个更有效的称为特征金字塔网络(FPN)主干。FPN使用具有lateral连接的自上而下架构,从单一尺度输入构建一个网络内特征金字塔。具有FPN主干的Faster R-CNN根据其规模从特征金字塔的不同级别提取RoI特征,随后的方法类似于vanilla ResNet。使用ResNet-FPN主干网通过Mask R-CNN进行特征提取,可以在精度和速度方面获得极佳的提升。

1ea9ae4d17b62d066bd230596ad4f48a.jpg

算法流程:


   a) 将原始图像中的RoI对应到feature map上,坐标位置可能会存在小数,此时直接取整产生一次量化误差;


   b) 在feature map的RoI区域上,将其划分成nxn的bins,bins的坐标位置可能会有小数,此时也直接取整,产生第二次量化误差;


   c) 最后在每个bin中进行max pooling操作,即可获得固定大小的feature map;


   在Mask-RCNN中使用RoIAlign提取固定大小的feature map。其算法流程与RoIPooling一样,只是在a)和b)步骤中,当坐标位置为小数时,不进行量化取整,而是保留小数。在c)步骤里每个bin中均匀取点,点的数值通过双线性插值获得。


2.3、ROI Align

   实际上,Mask R-CNN中还有一个很重要的改进,就是ROIAlign。


   Faster R-CNN存在的问题是:特征图与原始图像是不对准的(mis-alignment),所以会影响检测精度。而Mask R-CNN提出了RoIAlign的方法来取代ROI pooling,RoIAlign可以保留大致的空间位置。


   RoIPool是从每个RoI中提取特征。先将浮点数表示的RoI量化到与特征图匹配的粒度,然后将量化后的RoI分块后对每个块进行池化。这些量化使RoI与提取的特征错位。虽然可能不会影响分类,但对于预测像素级精确掩码有很大的负面影响。为了解决这个问题文章提出了一个新的层,称为ROIAlign。文章避免对RoI边界进行量化,即用x/16代替[x/16]。然后对分得的每一个块选取分块中的四个常规位置,并使用双线性插值来计算每一个位置上的精确值,并将结果汇总(池化)。

b78914b3bdf216b0a891caa5ee151588.png

  那么,RoI Pooling和RoI Align的区别在于哪里呢?如何能够精确的反向找到对应像素点边缘?对Pooling的划分不能按照Pooling的边缘,而是要按照像素点缩放后的边缘。

2a08480b3fff4cf89248f9e5dfc8184c.jpg

b3f2511ca550b6820a2a252df624f7d2.jpg

2.4、ResNet-FPN网络

   多尺度检测在目标检测中变得越来越重要,对小目标的检测尤其如此。现在主流的目标检测方法很多都用到了多尺度的方法,包括最新的yolo v3。Feature Pyramid Network (FPN)则是一种精心设计的多尺度检测方法,下面就开始简要介绍FPN。


   FPN结构中包括自下而上,自上而下和横向连接三个部分,如下图所示。这种结构可以将各个层级的特征进行融合,使其同时具有强语义信息和强空间信息,在特征学习中算是一把利器了。

540c56269298bc38c7020ac510ee7f27.jpg

ResNet-FPN包括3个部分:

       自下而上连接;

       自上而下连接;

       横向连接。


下面分别介绍:

自下而上连接:

   从下到上路径。可以明显看出,其实就是简单的特征提取过程,和传统的没有区别。具体就是将ResNet作为骨架网络,根据feature map的大小分为5个stage。stage2,stage3,stage4和stage5各自最后一层输出conv2,conv3,conv4和conv5分别定义为C2,C3,C4,C5,他们相对于原始图片的stride是{4,8,16,32}。需要注意的是,考虑到内存原因,stage1的conv1并没有使用。


自上而下和横向连接:

   自上而下是从最高层开始进行上采样,这里的上采样直接使用的是最近邻上采样,而不是使用反卷积操作,一方面简单,另外一方面可以减少训练参数。横向连接则是将上采样的结果和自底向上生成的相同大小的feature map进行融合。具体就是对 C2,C3,C4,C5中的每一层经过一个conv 1x1操作(1x1卷积用于降低通道数),无激活函数操作,输出通道全部设置为相同的256通道,然后和上采样的feature map进行加和操作。在融合之后还会再采用3*3的卷积核对已经融合的特征进行处理,目的是消除上采样的混叠效应(aliasing effect)。


   实际上,上图少绘制了一个分支:M5经过步长为2的max pooling下采样得到 P6,作者指出使用P6是想得到更大的anchor尺度512×512。但P6是只用在 RPN中用来得到region proposal的,并不会作为后续Fast RCNN的输入。


总结一下,ResNet-FPN作为RPN输入的feature map是P2,P3,P4,P5,P6 ,而作为后续Fast RCNN的输入则是P2,P3,P4,P5。

相关文章
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
465 7
|
4月前
|
机器学习/深度学习 JSON 算法
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
1493 3
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
|
3月前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
597 1
|
4月前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
393 1
|
4月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
703 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
4月前
|
机器学习/深度学习 算法 PyTorch
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-7.0版本进行目标检测的完整流程,包括算法介绍、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。YOLOv5以其高精度、快速度和模型小尺寸在计算机视觉领域受到广泛应用。
1669 0
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门与实践
【8月更文挑战第62天】本文以浅显易懂的方式介绍了深度学习领域中的核心技术之一——卷积神经网络(CNN)。文章通过生动的比喻和直观的图示,逐步揭示了CNN的工作原理和应用场景。同时,结合具体的代码示例,引导读者从零开始构建一个简单的CNN模型,实现对图像数据的分类任务。无论你是深度学习的初学者还是希望巩固理解的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
5月前
|
机器学习/深度学习 人工智能 算法
深度学习中的卷积神经网络(CNN)入门与实践
【9月更文挑战第19天】在这篇文章中,我们将探索深度学习的一个重要分支——卷积神经网络(CNN)。从基础概念出发,逐步深入到CNN的工作原理和实际应用。文章旨在为初学者提供一个清晰的学习路径,并分享一些实用的编程技巧,帮助读者快速上手实践CNN项目。
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
116 10