如何将模糊照片人脸恢复清晰,GFPGAN机器学习开源项目使用 | 机器学习

简介: 如何将模糊照片人脸恢复清晰,GFPGAN机器学习开源项目使用 | 机器学习

前言

最近看到一个有意思的机器学习项目——GFPGAN,他可以将模糊的人脸照片恢复清晰。开源项目的Github地址:https://github.com/TencentARC/GFPGAN


我们看一看作者给出的对比图。


屏幕快照 2022-06-08 下午11.38.33.png



最右侧的就是GFPGAN的效果,看一下最左层的输入图片,可以发现GFPGAN将图片恢复的非常清晰。这个效果非常惊艳。


按照以前的惯例,我还是先把这个项目安装使用一下,看看能不能对代码重新封装,变成可以工程化的项目。


环境安装

我们先看一下项目README给的提示。



image.png

首先需要的python版本是>=3.7的,所以我用Anaconda创建了一个python3.9的虚拟环境。Pytorch的安装直接从官网获取命令安装一个最新版本即可。


image.png


因为还有一些基础依赖的安装,照着安装一下就行,其实setup.py是已经在项目中的,如下图。


image.png


由于模型比较大,所以作者没有放在github上,给了下面的下载提示。该模型是作者提供已经训练好的模型。


image.png



如果下载很慢的话,可以从我的网盘下载。


链接:https://pan.baidu.com/s/1qU5PifU_qMZfM2Rgv8VpeA

提取码:TUAN


作者还提供了基础模型可供自行训练。


image.png


验证模型

下面我准备了一些图,挑了一些比较典型的图片,有黑白的、彩色的以及马赛克的,想看看是不是都可以实现清晰化处理。


准备的图片如下:


image.png


按照README提供的指令


python inference_gfpgan.py --upscale 2 --test_path inputs/newImages --save_root results

看一下执行结果:


(pytorch39) C:\Users\yi\PycharmProjects\GFPGAN>python inference_gfpgan.py --upscale 2 --test_path inputs/newImages --save_root results
C:\Users\yi\PycharmProjects\GFPGAN\inference_gfpgan.py:45: UserWarning: The unoptimized RealESRGAN is very slow on CPU. We do not use it. If you really want to use it, p
lease modify the corresponding codes.
  warnings.warn('The unoptimized RealESRGAN is very slow on CPU. We do not use it. '
Processing 331.jpg ...
E:\ProgramData\Anaconda3\envs\pytorch39\lib\site-packages\torch\nn\functional.py:3679: UserWarning: The default behavior for interpolate/upsample with float scale_factor
 changed in 1.6.0 to align with other frameworks/libraries, and now uses scale_factor directly, instead of relying on the computed output size. If you wish to restore th
e old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details.
  warnings.warn(
Processing 333.jpg ...
Processing 334.jpg ...
Processing 335.jpg ...
Results are in the [results] folder.
(pytorch39) C:\Users\yi\PycharmProjects\GFPGAN>

按照默认参数,会在results结果文件夹中生成4个目录分别为前后对比图、原检测出来的脸部图、处理后的脸部图、处理后的最终图。



image.png


我们看看效果


image.png


image.png

image.png


可以看出两点:


1、马赛克不能消除,有一张全马赛克的图片,直接无法修复。


2、常规的模糊照片修复的是真的很清晰呀。


总结

总的来说该项目是非常优秀的,从最终图片的效果上来说,非常好了,至于去除马赛克还是得看别的项目了。后面研究研究这么项目,看能不能改改。


分享:


       别人说你不行,是因为他自己做不到。你要尽全力保护你的梦想,那些嘲笑你的人,他们必定会失败,他们想把你变成和他们一样的人。如果你有梦想的话,就要努力去实现, 就这样。             ——《当幸福来敲门》


如果本文对你有用的话,请点个赞吧,谢谢!


相关文章
|
4月前
|
人工智能 Linux API
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
Omnitool 是一款开源的 AI 桌面环境,支持本地运行,提供统一交互界面,快速接入 OpenAI、Stable Diffusion、Hugging Face 等主流 AI 平台,具备高度扩展性。
559 94
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
|
1月前
|
数据可视化 Rust 机器学习/深度学习
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
mlop.ai 是首个为国区用户优化的机器学习工具,全栈免费开源,是主流付费解决方案 ClearML/WandB 的开源平替。常规实验追踪的工具经常大幅人为降速,mlop因为底层为Rust代码,能轻松支持高频数据写入。如需更多开发者帮助或企业支持,敬请联系cn@mlop.ai
106 12
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
阿里云人工智能平台 PAI 开源 EasyDistill 框架助力大语言模型轻松瘦身
本文介绍了阿里云人工智能平台 PAI 推出的开源工具包 EasyDistill。随着大语言模型的复杂性和规模增长,它们面临计算需求和训练成本的障碍。知识蒸馏旨在不显著降低性能的前提下,将大模型转化为更小、更高效的版本以降低训练和推理成本。EasyDistill 框架简化了知识蒸馏过程,其具备多种功能模块,包括数据合成、基础和进阶蒸馏训练。通过数据合成,丰富训练集的多样性;基础和进阶蒸馏训练则涵盖黑盒和白盒知识转移策略、强化学习及偏好优化,从而提升小模型的性能。
|
3月前
|
存储 人工智能 云栖大会
【云栖大会】阿里云设计中心 × 教育部协同育人项目成果展,PAI ArtLab助力高校AIGC教育新路径
【云栖大会】阿里云设计中心 × 教育部协同育人项目成果展,PAI ArtLab助力高校AIGC教育新路径
|
4月前
|
机器学习/深度学习 人工智能 并行计算
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟
Unsloth 是一款开源的大语言模型微调工具,支持 Llama-3、Mistral、Phi-4 等主流 LLM,通过优化计算步骤和手写 GPU 内核,显著提升训练速度并减少内存使用。
551 3
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟
|
4月前
|
人工智能 自然语言处理 物联网
阿里万相重磅开源,人工智能平台PAI一键部署教程来啦
阿里云视频生成大模型万相2.1(Wan)重磅开源!Wan2.1 在处理复杂运动、还原真实物理规律、提升影视质感以及优化指令遵循方面具有显著的优势,轻松实现高质量的视频生成。同时,万相还支持业内领先的中英文文字特效生成,满足广告、短视频等领域的创意需求。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署阿里万相重磅开源的4个模型,可获得您的专属阿里万相服务。
|
4月前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
|
7月前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
658 4
AutoTrain:Hugging Face 开源的无代码模型训练平台
|
7月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
191 6
|
7月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段。本文介绍了 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,强调了样本量、随机性和时间因素的重要性,并展示了 Python 在 A/B 测试中的具体应用实例。
157 1

热门文章

最新文章