【Elasticsearch专栏 07】深入探索:Elasticsearch的倒排索引如何进行模糊查询和通配符查询

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Elasticsearch的倒排索引支持模糊查询和通配符查询,通过特定的算法和数据结构,能够实现对关键词的模糊匹配和通配符匹配。这两种查询类型提供了更灵活的搜索功能,但可能影响查询性能,需结合优化策略使用。

Elasticsearch的倒排索引如何进行模糊查询和通配符查询

Elasticsearch的倒排索引确实支持模糊查询和通配符查询。这两种查询类型允许用户在搜索时使用不完整的或模糊的词汇来匹配文档内容。下面我将详细描述这两种查询类型的工作原理,并提供一些Elasticsearch命令和简化的源码片段来说明它们是如何工作的。

01 模糊查询(Fuzzy Query)

模糊查询允许用户搜索与指定词汇相似但不完全相同的词汇。在Elasticsearch中,模糊查询基于Damerau-Levenshtein距离算法,该算法计算两个字符串之间的差异程度。差异程度越小,两个字符串越相似。

当执行模糊查询时,Elasticsearch会首先使用倒排索引找到包含指定词汇的文档。然后,它会根据Damerau-Levenshtein距离算法计算每个匹配词汇与查询词汇的差异程度,并将差异程度较小的文档排在结果列表的前面。

以下是一个使用Elasticsearch执行模糊查询的示例命令:

GET /my_index/_search  
{
     
  "query": {
     
    "fuzzy": {
     
      "field_name": {
     
        "value": "aple",  
        "fuzziness": 2  
      }  
    }  
  }  
}

在这个示例中,搜索名为field_name的字段中包含与"aple"相似的词汇的文档。fuzziness参数指定了允许的差异程度,数值越大,允许的差异越大。

在Elasticsearch的源码中,模糊查询的实现可能涉及对倒排索引的遍历和对每个匹配词汇的相似度计算。具体的实现细节可能会因Elasticsearch版本的不同而有所差异,但基本原理是相似的。

02 通配符查询(Wildcard Query)

通配符查询允许用户使用通配符来匹配词汇。Elasticsearch支持使用*?作为通配符,其中*表示匹配任意数量的字符,?表示匹配单个字符。

当执行通配符查询时,Elasticsearch会遍历倒排索引中所有可能的词汇,找到与通配符模式匹配的词汇,并返回包含这些词汇的文档。由于通配符查询可能需要遍历大量的词汇,因此它们的性能通常较低,特别是在大型索引中。

以下是一个使用Elasticsearch执行通配符查询的示例命令:

GET /my_index/_search  
{
     
  "query": {
     
    "wildcard": {
     
      "field_name": "te*t"  
    }  
  }  
}

在这个示例中,搜索名为field_name的字段中包含以"te"开头并以"t"结尾的词汇的文档。

在Elasticsearch的源码中,通配符查询的实现可能涉及对倒排索引的遍历和对每个词汇的模式匹配。由于通配符查询可能需要遍历大量的词汇,因此它们的实现可能会比较复杂,并且可能涉及到一些优化策略来提高查询性能。

03 查询性能优化

虽然模糊查询和通配符查询提供了强大的搜索功能,但由于它们通常需要遍历大量的词汇和文档,因此可能会对查询性能产生负面影响。为了优化这些查询的性能,Elasticsearch提供了以下几种策略:

  1. 限制查询范围:通过指定索引、类型、字段等范围来限制查询的范围,减少需要遍历的文档和词汇数量。
  2. 使用更精确的查询类型:在可能的情况下,使用更精确的查询类型(如精确匹配查询、短语查询等)来替代模糊查询和通配符查询,以提高查询性能。
  3. 优化索引结构:合理设计索引结构,避免过度分片和使用不必要的副本,以减少查询时需要访问的节点和分片数量。
  4. 利用查询缓存:Elasticsearch提供了查询缓存机制,可以缓存查询结果,避免重复计算。对于频繁执行的模糊查询和通配符查询,利用查询缓存可以显著提高性能。
  5. 调整分词器:选择合适的分词器,确保文档中的词汇被正确切分和索引,以提高查询的准确性和性能。

通过综合运用这些优化策略,可以在一定程度上提高模糊查询和通配符查询的性能。然而,由于这些查询类型本身的复杂性,它们的性能可能仍然比精确匹配查询等更简单的查询类型要差。

04 总结

Elasticsearch的倒排索引通过支持模糊查询和通配符查询,为用户提供了更灵活和强大的搜索功能。这些查询类型基于Elasticsearch的底层数据结构和算法实现,允许用户在不完全知道目标词汇的情况下进行搜索。然而,由于需要遍历大量的词汇和文档,这些查询类型可能会对查询性能产生负面影响。因此,在实际使用中,用户需要根据具体需求和场景选择合适的查询类型,并结合其他优化策略来提高查询性能。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2月前
|
存储 固态存储 Java
Elasticsearch中查询性能优化
Elasticsearch中查询性能优化
182 0
|
3月前
Elasticsearch之RestClient查询文档
Elasticsearch之RestClient查询文档
136 1
|
2月前
|
存储 缓存 自然语言处理
【Elasticsearch专栏 05】深入探索:Elasticsearch在处理非结构化数据时,倒排索引有何优势
在处理非结构化数据时,倒排索引的优势在于其高效的查询性能,能够迅速匹配文本中的关键词,实现全文搜索。此外,倒排索引支持复杂的查询操作,可扩展性强,且通过压缩技术优化存储空间。这些特点使倒排索引成为处理非结构化数据的理想选择。
|
2月前
|
存储 自然语言处理 搜索推荐
【Elasticsearch专栏 01】深入探索:Elasticsearch的正向索引和倒排索引是什么?
正向索引根据文档ID直接查找文档内容,适用于精确匹配场景;而倒排索引则基于文档内容构建,通过关键词快速定位相关文档,适用于全文搜索,显著提高查询效率,是搜索引擎的核心技术。
|
2月前
|
存储 自然语言处理 搜索推荐
【Elasticsearch专栏 06】深入探索:Elasticsearch如何处理倒排索引中的分词问题
Elasticsearch通过内置和可定制的分词器及过滤器处理倒排索引中的分词问题,确保文本被拆分成合适的词条并优化存储,为全文搜索等提供高效支持。用户可通过分析API测试和调整分词效果。
|
2月前
|
存储 缓存 自然语言处理
【Elasticsearch专栏 04】深入探索:Elasticsearch倒排索引中的词条是如何存储和管理
倒排索引中,词条以有序方式存储在词典中,关联倒排列表,记录文档ID和位置信息。词条的添加涉及分词、添加到词典和更新倒排列表。删除涉及从词典和倒排列表中移除词条。查询时,快速定位词条,获取倒排列表以定位相关文档。整个过程涉及高效的数据结构和优化策略。
|
2月前
|
存储 自然语言处理 负载均衡
【Elasticsearch专栏 03】深入探索:Elasticsearch倒排索引是如何提高搜索效率的
倒排索引通过直接关联文档内容,将关键词映射到相关文档,减少扫描范围,并使用高效数据结构快速查找和匹配关键词,从而显著提高搜索效率。此外,它支持复杂查询操作和搜索结果优化,进一步提高搜索的准确性和用户满意度。
|
2月前
|
存储 自然语言处理 搜索推荐
【Elasticsearch专栏 02】深入探索:Elasticsearch为什么使用倒排索引而不是正排索引
倒排索引在搜索引擎中更受欢迎,因为它直接关联文档内容,支持全文搜索和模糊搜索,提高查询效率。其紧凑的结构减少了存储空间,并方便支持多种查询操作。相比之下,正排索引在搜索效率、存储和灵活性方面存在局限。
|
2月前
|
缓存 自然语言处理 数据挖掘
一篇文章让你学会Elasticsearch中的查询
一篇文章让你学会Elasticsearch中的查询
137293 118
|
2月前
|
存储 自然语言处理 搜索推荐
深入理解Elasticsearch倒排索引
深入理解Elasticsearch倒排索引
54 0