谷歌发布开源LLM Gemma,魔搭社区评测+最佳实践教程来啦!

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: Gemma是由Google推出的一系列轻量级、先进的开源模型,他们是基于 Google Gemini 模型的研究和技术而构建。

导读

Gemma是由Google推出的一系列轻量级、先进的开源模型,他们是基于 Google Gemini 模型的研究和技术而构建。它们是一系列text generation,decoder-only的大型语言模型,对英文的支持较好,具有模型权重开源、并提供预训练版本(base模型)和指令微调版本(chat模型)。本次Gemma开源提供了四个大型语言模型,提供了 2B 和 7B 两种参数规模的版本,每种都包含了预训练版本(base模型)和指令微调版本(chat模型)。

官方除了提供pytorch版本之外,也提供了GGUF版本,可在各类消费级硬件上运行,无需数据量化处理,并拥有高达 8K tokens 的处理能力,Gemma 7B模型的预训练数据高达6万亿Token,也证明了通过大量的高质量数据训练,可以大力出奇迹,小模型也可以持续提升取得好的效果。

那Gemma模型的能力怎么样呢?下面是Gemma模型的基础版本与其他开源模型在公开榜单的对比:

数据来源https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

从榜单中可以看到,Gemma-7B模型超过了Mistral-7B模型,取得了一个很好的结果。

技术报告链接:

https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf

开源代码链接:

https://github.com/google/gemma_pytorch

目前魔搭社区已经支持 Gemma的下载、推理、微调一站式体验,并提供对应最佳实践教程,欢迎感兴趣的开发者小伙伴们来玩!

我们体验了Gemma指令微调后的模型,初步总结的如下的优点和可提升点:

优点

可提升点

英文表现强,逻辑推理能力较强

中文表现力较弱,偶尔会出现codeswitch情况

数学和代码能力不错

窗口长度为8K,在长窗口场景,比如论文分析,小说续写上,窗口长度略小。

多轮效果不佳,可持续提升

prompt template暂时不支持system role

定量分析(以gemma-2b-it为例,在公开数据集,使用客观方式评测)

模型

能力项

数据集

平均得分

能力评价

gemma-2b-it

数学

GSM8K

0.15

对于2B大小的模型来说,在GSM8K上的表现比较不错

中文知识推理

C-Eval

0.3358

中文推理能力中等偏下,有些场景无法很好的完成指令跟随和知识推理

  • 备注:

总之,Gemma是非常好的基础模型,同时在中文和多轮上还有非常大的提升空间,期待社区开发者的积极反馈,同时期待中国开发者基于Gemma模型优化中文和多轮对话能力,在此基础上做出更好的模型。

Gemma模型体验

英文常识&推理问答能力,效果不错:

中文常识问答能力:

数学:确实不错,在四则运算和中文应用题解题上都能正确解答

四则运算

中文应用题

代码能力,试跑了2题,相对一般:

经典快排问题

最后输出排序结果不正确

代码执行结果,排序存在问题:

def quick_sort(arr, low, high):
    if low < high:
        partition_index = partition(arr, low, high)
        quick_sort(arr, low, partition_index - 1)
        quick_sort(arr, partition_index + 1, high)
def partition(arr, low, high):
    pivot_element = arr[high]
    i = low - 1
    for j in range(low, high):
        if arr[j] <= pivot_element:
            i += 1
    arr[i + 1], arr[high] = arr[high], arr[i + 1]
    return i + 1
# Example usage
arr = [5, 3, 8, 2, 4, 7, 1, 9]
quick_sort(arr, 0, len(arr) - 1)
print(arr)
# [1, 2, 3, 8, 5, 4, 7, 9]

用Java实现N皇后问题求解

测试该程序无法运行

多轮对话能力,比较一般:

环境配置与安装

  1. python 3.10及以上版本
  2. pytorch 1.12及以上版本,推荐2.0及以上版本
  3. 建议使用CUDA 11.4及以上
  4. transformers>=4.38.0

可以使用魔搭社区的免费算力:


Gemma模型链接和下载

Gemma模型系列现已在ModelScope社区开源,包括:

Gemma-2b:

https://modelscope.cn/models/AI-ModelScope/gemma-2b

Gemma-2b-it:

https://modelscope.cn/models/AI-ModelScope/gemma-2b-it

Gemma-7b:

https://modelscope.cn/models/AI-ModelScope/gemma-7b

Gemma-7b-it:

https://modelscope.cn/models/AI-ModelScope/gemma-7b-it

体验链接:

https://modelscope.cn/studios/AI-ModelScope/google-gemma-demo/summary

社区支持直接下载模型的repo:

from modelscope import snapshot_download
model_dir = snapshot_download("AI-ModelScope/gemma-7b-it")

Gemma模型推理

Gemma-7b-it推理代码:

需要使用tokenizer.apply_chat_template获取指令微调模型的prompt template:

from modelscope import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("AI-ModelScope/gemma-7b-it")
model = AutoModelForCausalLM.from_pretrained("AI-ModelScope/gemma-7b-it", torch_dtype = torch.bfloat16, device_map="auto")
input_text = "hello."
messages = [
    {"role": "user", "content": input_text}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
input_ids = tokenizer([text], return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids,max_new_tokens=256)
print(tokenizer.decode(outputs[0]))

资源消耗:

Gemma-2b-it

模型微调和微调后推理

我们使用SWIFT来对模型进行微调,SWIFT是魔搭社区官方提供的LLM&AIGC模型微调推理框架。

微调代码开源地址:

https://github.com/modelscope/swift

我们使用hc3-zh分类数据集进行微调. 任务是: 判断数据样本的回答来自human还是chatgpt.

环境准备:

git clone https://github.com/modelscope/swift.git
cd swift
pip install .[llm]

微调脚本: LoRA

# https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/gemma_2b_instruct/lora
# Experimental environment: V100, A10, 3090
# 12GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift sft \
    --model_id_or_path AI-ModelScope/gemma-2b-it \
    --sft_type lora \
    --tuner_backend swift \
    --template_type AUTO \
    --dtype AUTO \
    --output_dir output \
    --dataset hc3-zh \
    --train_dataset_sample 5000 \
    --num_train_epochs 1 \
    --max_length 2048 \
    --check_dataset_strategy warning \
    --lora_rank 8 \
    --lora_alpha 32 \
    --lora_dropout_p 0.05 \
    --lora_target_modules ALL \
    --gradient_checkpointing true \
    --batch_size 1 \
    --weight_decay 0.01 \
    --learning_rate 1e-4 \
    --gradient_accumulation_steps 16 \
    --max_grad_norm 0.5 \
    --warmup_ratio 0.1 \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit 2 \
    --logging_steps 10 \

训练过程也支持本地数据集,需要指定如下参数:

--custom_train_dataset_path xxx.jsonl \
--custom_val_dataset_path yyy.jsonl \

自定义数据集的格式可以参考:

https://github.com/modelscope/swift/blob/main/docs/source/LLM/%E8%87%AA%E5%AE%9A%E4%B9%89%E4%B8%8E%E6%8B%93%E5%B1%95.md#%E6%B3%A8%E5%86%8C%E6%95%B0%E6%8D%AE%E9%9B%86%E7%9A%84%E6%96%B9%E5%BC%8F

微调后推理脚本: (这里的ckpt_dir需要修改为训练生成的checkpoint文件夹)

# Experimental environment: V100, A10, 3090
CUDA_VISIBLE_DEVICES=0 \
swift infer \
    --ckpt_dir "output/gemma-2b-instruct/vx_xxx/checkpoint-xxx" \
    --load_dataset_config true \
    --max_length 2048 \
    --max_new_tokens 2048 \
    --temperature 0.1 \
    --top_p 0.7 \
    --repetition_penalty 1. \
    --do_sample true \

微调的可视化结果

训练准确率:

训练后生成样例:

[PROMPT]<bos><start_of_turn>user
Classification Task: Are the following responses from a human or from ChatGPT?
Question: 能帮忙解决一下吗
Answer: 当然,我很乐意帮助你解决问题。请提出你的问题,我会尽力给出最好的帮助。
Category: Human, ChatGPT
Output:<end_of_turn>
<start_of_turn>model
[OUTPUT]ChatGPT<end_of_turn>
[LABELS]ChatGPT
---------------------------------------------------
[PROMPT]<bos><start_of_turn>user
Classification Task: Are the following responses from a human or from ChatGPT?
Question: 请问哪样存钱好
Answer: 若需了解招商银行存款利率,可进入招行主页在网页右下侧“实时金融信息”下方选择“存款利率”查看。
Category: Human, ChatGPT
Output:<end_of_turn>
<start_of_turn>model
[OUTPUT]Human<end_of_turn>
[LABELS]Human

点击直达模型卡片:gemma-7b-it · 模型库 (modelscope.cn)

相关文章
|
1月前
|
人工智能 自然语言处理 测试技术
能够双向推理的LLM!Dream-7B:港大联合华为开源的扩散推理模型,能够同时考虑前后文信息
Dream-7B是由香港大学与华为诺亚方舟实验室联合研发的开源扩散大语言模型,采用独特的掩码扩散范式,在文本生成、数学推理和代码编写等任务中展现出卓越性能。
106 3
能够双向推理的LLM!Dream-7B:港大联合华为开源的扩散推理模型,能够同时考虑前后文信息
|
2月前
|
人工智能 数据可视化 API
36.7K star!拖拽构建AI流程,这个开源LLM应用框架绝了!
`Flowise` 是一款革命性的低代码LLM应用构建工具,开发者通过可视化拖拽界面,就能快速搭建基于大语言模型的智能工作流。该项目在GitHub上线不到1年就斩获**36.7K星标**,被开发者誉为"AI时代的乐高积木"。
163 8
|
19天前
|
机器学习/深度学习 人工智能 算法
RAGEN:RL训练LLM推理新范式!开源强化学习框架让Agent学会多轮决策
RAGEN是一个基于StarPO框架的开源强化学习系统,通过马尔可夫决策过程形式化Agent与环境的交互,支持PPO、GRPO等多种优化算法,显著提升多轮推理训练的稳定性。
108 5
RAGEN:RL训练LLM推理新范式!开源强化学习框架让Agent学会多轮决策
|
2月前
|
人工智能 并行计算 语音技术
Open-LLM-VTuber:宅男福音!开源AI老婆离线版上线,实时语音+Live2D互动还会脸红心跳
Open-LLM-VTuber 是一个开源的跨平台语音交互 AI 伴侣项目,支持实时语音对话、视觉感知和生动的 Live2D 动态形象,完全离线运行,保护用户隐私。
237 10
Open-LLM-VTuber:宅男福音!开源AI老婆离线版上线,实时语音+Live2D互动还会脸红心跳
|
1月前
|
人工智能 自然语言处理 数据可视化
89.4K star!这个开源LLM应用开发平台,让你轻松构建AI工作流!
Dify 是一款开源的 LLM 应用开发平台,通过直观的可视化界面整合 AI 工作流、RAG 管道、智能代理等功能,助你快速实现从原型到生产的跨越。支持本地部署和云端服务,提供企业级功能与完整 API 接口。
|
3月前
|
数据采集 人工智能 监控
Crawl4LLM:你的模型还在吃垃圾数据?CMU博士开源AI爬虫,自动筛选高价值网页,数据抓取质量飙升300%
Crawl4LLM 是清华大学和卡内基梅隆大学联合开发的智能爬虫系统,通过网页价值评估和优先级队列技术,显著提升大语言模型预训练数据采集效率。
203 4
|
3月前
|
机器学习/深度学习 人工智能 测试技术
MoBA:LLM长文本救星!月之暗面开源新一代注意力机制:处理1000万token能快16倍,已在Kimi上进行验证
MoBA 是一种新型注意力机制,通过块稀疏注意力和无参数门控机制,显著提升大型语言模型在长上下文任务中的效率。
160 3
|
3月前
|
人工智能 机器人
D1net阅闻 | 谷歌DeepMind研究发现LLM新特性
D1net阅闻 | 谷歌DeepMind研究发现LLM新特性
|
15天前
|
机器学习/深度学习 存储 缓存
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
大型语言模型(LLM)的推理效率是AI领域的重要挑战。本文聚焦KV缓存技术,通过存储复用注意力机制中的Key和Value张量,减少冗余计算,显著提升推理效率。文章从理论到实践,详细解析KV缓存原理、实现与性能优势,并提供PyTorch代码示例。实验表明,该技术在长序列生成中可将推理时间降低近60%,为大模型优化提供了有效方案。
101 15
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
|
22天前
|
人工智能 算法 数据库
美团面试:LLM大模型存在哪些问题?RAG 优化有哪些方法?_
美团面试:LLM大模型存在哪些问题?RAG 优化有哪些方法?_

热门文章

最新文章