【Elasticsearch专栏 03】深入探索:Elasticsearch倒排索引是如何提高搜索效率的

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 倒排索引通过直接关联文档内容,将关键词映射到相关文档,减少扫描范围,并使用高效数据结构快速查找和匹配关键词,从而显著提高搜索效率。此外,它支持复杂查询操作和搜索结果优化,进一步提高搜索的准确性和用户满意度。

Elasticsearch倒排索引是如何提高搜索效率的?

倒排索引之所以能够提高搜索效率,关键在于其独特的构建方式和数据结构设计。下面,我将对倒排索引的工作原理进行深层解读,并阐述其如何显著提高搜索效率。

01 倒排索引的工作原理

  1. 分词与索引构建

    首先,搜索引擎会对文档内容进行分词处理,将文本拆分成独立的单词或词组。然后,为每个单词或词组创建一个倒排列表,该列表记录了包含该单词或词组的所有文档的ID和该单词在文档中的位置信息(如偏移量、词频等)。

  2. 索引存储与优化

    接下来,搜索引擎会将这些倒排列表存储在磁盘上,并进行一系列的优化操作,如压缩、合并等,以减少存储空间和提高查询效率。这些优化操作使得倒排索引在保持高效查询性能的同时,也具有良好的可扩展性和稳定性。

  3. 查询处理

    当用户发起搜索请求时,搜索引擎会对查询语句进行分词处理,并生成一个查询词列表。然后,根据这个查询词列表在倒排索引中查找对应的倒排列表,并将这些倒排列表进行交集运算,以找到同时包含所有查询词的文档。最后,根据一定的排序算法对结果进行排序,并返回给用户。

02 倒排索引如何提高搜索效率

  1. 减少扫描范围

    正排索引需要扫描整个文档集来确定是否包含查询关键词,而倒排索引则可以直接定位到与查询关键词相关的文档,从而大大减少了扫描范围,提高了搜索效率。

  2. 快速查找与匹配

    倒排索引使用高效的数据结构(如B-Tree、哈希表等)来存储和查询倒排列表,使得关键词的查找和匹配操作变得非常快速。这种快速查找与匹配的能力是倒排索引提高搜索效率的关键。

  3. 支持复杂查询

    倒排索引不仅可以支持简单的关键词匹配查询,还可以方便地支持布尔查询、短语查询、模糊查询等复杂查询操作。这些复杂查询操作在正排索引中难以实现或效率较低,而在倒排索引中则可以轻松实现并保持较高的效率。

  4. 优化搜索结果

    通过对倒排索引中的关键词进行权重设置、停用词过滤等操作,搜索引擎可以优化搜索结果,提高搜索的准确性和用户满意度。这些优化操作在正排索引中难以实现或效果有限,而在倒排索引中则可以发挥出更大的作用。

  5. 分布式处理与负载均衡

    在大规模搜索引擎中,倒排索引可以很容易地进行分布式处理和负载均衡。通过将倒排索引分片并存储在多个节点上,可以实现高效的并行处理和负载均衡,进一步提高搜索效率。

03 小结

综上所述,倒排索引通过其独特的构建方式和数据结构设计,实现了高效、快速、灵活的搜索操作。相较于正排索引,倒排索引在搜索效率、存储、扩展性、查询复杂性等方面都具有显著优势,因此被广泛应用于现代搜索引擎中。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2月前
|
存储 自然语言处理 BI
|
6天前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
9天前
|
存储 人工智能 API
(Elasticsearch)使用阿里云 infererence API 及 semantic text 进行向量搜索
本文展示了如何使用阿里云 infererence API 及 semantic text 进行向量搜索。
|
5天前
|
搜索推荐 API 定位技术
一文看懂Elasticsearch的技术架构:高效、精准的搜索神器
Elasticsearch 是一个基于 Lucene 的开源搜索引擎,以其强大的全文本搜索功能和快速的倒排索引技术著称。它不仅支持数字、文本、地理位置等多类型数据,还提供了可调相关度分数、高级查询 DSL 等功能。Elasticsearch 的核心技术流程包括数据导入、解析、索引化、查询处理、得分计算及结果返回,确保高效处理大规模数据并提供准确的搜索结果。通过 RESTful API、Logstash 和 Filebeat 等工具,Elasticsearch 可以从多种数据源中导入和解析数据,支持复杂的查询需求。
28 0
|
1月前
|
存储 缓存 固态存储
Elasticsearch高性能搜索
【11月更文挑战第1天】
50 6
|
1月前
|
API 索引
Elasticsearch实时搜索
【11月更文挑战第2天】
48 1
|
1月前
|
存储 自然语言处理 数据库
Elasticsearch倒排索引
【11月更文挑战第2天】
49 1
|
1月前
|
测试技术 API 开发工具
ElasticSearch核心概念:倒排索引
ElasticSearch核心概念:倒排索引
59 6
|
2月前
|
人工智能
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
183 2
|
2月前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
227 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。