AI Earth ——开发者模式案例6:决策树模型实现冬小麦提取

简介: AI Earth ——开发者模式案例6:决策树模型实现冬小麦提取

决策树模型实现冬小麦提取

依据作物在不同物候期内卫星影像的光谱存在差异的特征,可建立冬小麦提取算法,进行像元尺度冬小麦提取。这里同样是使用的NDVI作为阈值提取条件,分别使用不同的聚合方式完成对影像的筛选,从而得出冬小麦种植面积的提取。

初始化环境

import aie
aie.Authenticate()
aie.Initialize()

指定需要检索的区域

feature_collection = aie.FeatureCollection('China_City') \
                        .filter(aie.Filter.eq('city', '亳州市'))
region = feature_collection.geometry()

影像检索

# 指定检索数据集,可设置检索的空间和时间范围,以及属性过滤条件(如云量过滤等)
def getl8_ndvi(startdate,enddate):
    dataset = aie.ImageCollection('LANDSAT_LC08_C02_T1_L2') \
                 .filterBounds(region) \
                 .filterDate(startdate, enddate) 
                 # .filter(aie.Filter.lte('eo:cloud_cover', 20.0))
    ndvi =  dataset.map(get_ndvi)  
    return ndvi
def get_ndvi(image):
    ndvi = image.normalizedDifference(['SR_B5', 'SR_B4'])
    return ndvi  
# 黄淮海地区冬小麦典型物候期。播种期 10-11月,旺长期3-4月,成熟期5-6月
NDVI_median = getl8_ndvi('2017-10-11', '2017-11-10').median().clip(region) 
NDVI_max = getl8_ndvi('2018-03-20', '2018-04-20').max().clip(region) 
NDVI_min = getl8_ndvi('2018-05-20', '2018-06-30').min().clip(region) 
# 冬小麦提取规则集
mask1 = NDVI_max.gt(aie.Image.constant(0.33))     # 过滤水体、不透水面、裸地等非植被区域
mask2 = NDVI_median.lt(aie.Image.constant(0.50))  # 过滤森林、春播作物
mask3 = NDVI_max.lte(aie.Image.constant(0.48))    # < 0.48存在
mask4 = NDVI_max.gt(aie.Image.constant(0.48))     # 区分植被区域和非植被区域,> 0.48 为植被区域
mask5 = NDVI_min.gt(aie.Image.constant(-0.12))    # 筛选冬小麦区域,成熟/收获期冬小麦植被指数下降
mask6 = NDVI_min.lt(aie.Image.constant(0.17))   
mask7 = NDVI_min.lt(NDVI_max.add(aie.Image.constant(0.5)))
wheat1 = mask1.And(mask2).And(mask3).And(mask5).And(mask6)
wheat2 = mask1.And(mask2).And(mask4).And(mask5).And(mask7)
wheat  = wheat1.add(wheat2).where((wheat1.add(wheat2)).gt(aie.Image.constant(0)),aie.Image.constant(1))

数据可视化

map = aie.Map(
    center=region.getCenter(),
    height=800,
    zoom=7
)
vis_params = {
    'color': '#00FF00'
}
map.addLayer(
    region,
    vis_params,
    'region',
    bounds=region.getBounds()
)
mask_vis  = {
    'min': 0,
    'max': 1,
    'palette': ['#ffffff', '#008000']    # 0:白色, 1:绿色
}
ndvi_vis  = {
    'min': -0.2,
    'max': 0.6,
    'palette': ['#d7191c', '#fdae61', '#ffffc0', '#a6d96a', '#1a9641']
}
map.addLayer(NDVI_median,ndvi_vis, 'NDVI_median', bounds=region.getBounds())
map.addLayer(NDVI_max,ndvi_vis, 'NDVI_max', bounds=region.getBounds())
map.addLayer(NDVI_min,ndvi_vis, 'NDVI_min', bounds=region.getBounds())
map.addLayer(wheat,mask_vis, 'wheat', bounds=region.getBounds())    # 绿色区域为小麦
map

参考文献

潘力,夏浩铭,王瑞萌,等. 基于Google Earth Engine 的淮河流域越冬作物种植面积制图[J]. 农业工程学报,2021,37(18):211-218. doi:10.11975/j.issn.1002-6819.2021.18.025 http://www.tcsae.org

备注:案例以建立规则集提取冬小麦为主,主要借鉴参考文献中部分分类参数和指标用做流程测试,另仅使用 Landsat-8 数据,因此与参考文献中的成果有一定差异敬请谅解。

 

相关文章
|
2天前
|
机器学习/深度学习 人工智能 编解码
Inf-DiT:清华联合智谱AI推出超高分辨率图像生成模型,生成的空间复杂度从 O(N^2) 降低到 O(N)
Inf-DiT 是清华大学与智谱AI联合推出的基于扩散模型的图像上采样方法,能够生成超高分辨率图像,突破传统扩散模型的内存限制,适用于多种实际应用场景。
36 21
Inf-DiT:清华联合智谱AI推出超高分辨率图像生成模型,生成的空间复杂度从 O(N^2) 降低到 O(N)
|
3天前
|
人工智能 Python
ImBD:复旦联合华南理工推出 AI 内容检测模型,快速辨别文本内容是否为 AI 生成
ImBD是一款由复旦大学、华南理工大学等机构联合推出的AI内容检测器,能够快速识别机器修订文本,适用于多种场景,显著提升检测性能。
26 8
ImBD:复旦联合华南理工推出 AI 内容检测模型,快速辨别文本内容是否为 AI 生成
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
48 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
18天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
85 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
1天前
|
人工智能 物联网
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
27 10
|
10天前
|
机器学习/深度学习 数据采集 人工智能
AI在用户行为分析中的应用:实现精准洞察与决策优化
AI在用户行为分析中的应用:实现精准洞察与决策优化
55 15
|
27天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
78 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
8天前
|
人工智能 自然语言处理 前端开发
三大行业案例:AI大模型+Agent实践全景
本文将从AI Agent和大模型的发展背景切入,结合51Talk、哈啰出行以及B站三个各具特色的行业案例,带你一窥事件驱动架构、RAG技术、人机协作流程,以及一整套行之有效的实操方法。具体包含内容有:51Talk如何让智能客服“主动进攻”,带来约课率、出席率双提升;哈啰出行如何由Copilot模式升级为Agent模式,并应用到客服、营销策略生成等多个业务场景;B站又是如何借力大模型与RAG方法,引爆了平台的高效内容检索和强互动用户体验。
95 5
|
12天前
|
存储 人工智能 安全
微软推出Copilot Vision AI助手赋能网页浏览与决策
微软推出Copilot Vision AI助手赋能网页浏览与决策
|
22天前
|
人工智能 自然语言处理 物联网
AI Safeguard联合 CMU,斯坦福提出端侧多模态小模型
随着人工智能的快速发展,多模态大模型(MLLMs)在计算机视觉、自然语言处理和多模态任务中扮演着重要角色。