AI Earth ——开发者模式案例6:决策树模型实现冬小麦提取

简介: AI Earth ——开发者模式案例6:决策树模型实现冬小麦提取

决策树模型实现冬小麦提取

依据作物在不同物候期内卫星影像的光谱存在差异的特征,可建立冬小麦提取算法,进行像元尺度冬小麦提取。这里同样是使用的NDVI作为阈值提取条件,分别使用不同的聚合方式完成对影像的筛选,从而得出冬小麦种植面积的提取。

初始化环境

import aie
aie.Authenticate()
aie.Initialize()

指定需要检索的区域

feature_collection = aie.FeatureCollection('China_City') \
                        .filter(aie.Filter.eq('city', '亳州市'))
region = feature_collection.geometry()

影像检索

# 指定检索数据集,可设置检索的空间和时间范围,以及属性过滤条件(如云量过滤等)
def getl8_ndvi(startdate,enddate):
    dataset = aie.ImageCollection('LANDSAT_LC08_C02_T1_L2') \
                 .filterBounds(region) \
                 .filterDate(startdate, enddate) 
                 # .filter(aie.Filter.lte('eo:cloud_cover', 20.0))
    ndvi =  dataset.map(get_ndvi)  
    return ndvi
def get_ndvi(image):
    ndvi = image.normalizedDifference(['SR_B5', 'SR_B4'])
    return ndvi  
# 黄淮海地区冬小麦典型物候期。播种期 10-11月,旺长期3-4月,成熟期5-6月
NDVI_median = getl8_ndvi('2017-10-11', '2017-11-10').median().clip(region) 
NDVI_max = getl8_ndvi('2018-03-20', '2018-04-20').max().clip(region) 
NDVI_min = getl8_ndvi('2018-05-20', '2018-06-30').min().clip(region) 
# 冬小麦提取规则集
mask1 = NDVI_max.gt(aie.Image.constant(0.33))     # 过滤水体、不透水面、裸地等非植被区域
mask2 = NDVI_median.lt(aie.Image.constant(0.50))  # 过滤森林、春播作物
mask3 = NDVI_max.lte(aie.Image.constant(0.48))    # < 0.48存在
mask4 = NDVI_max.gt(aie.Image.constant(0.48))     # 区分植被区域和非植被区域,> 0.48 为植被区域
mask5 = NDVI_min.gt(aie.Image.constant(-0.12))    # 筛选冬小麦区域,成熟/收获期冬小麦植被指数下降
mask6 = NDVI_min.lt(aie.Image.constant(0.17))   
mask7 = NDVI_min.lt(NDVI_max.add(aie.Image.constant(0.5)))
wheat1 = mask1.And(mask2).And(mask3).And(mask5).And(mask6)
wheat2 = mask1.And(mask2).And(mask4).And(mask5).And(mask7)
wheat  = wheat1.add(wheat2).where((wheat1.add(wheat2)).gt(aie.Image.constant(0)),aie.Image.constant(1))

数据可视化

map = aie.Map(
    center=region.getCenter(),
    height=800,
    zoom=7
)
vis_params = {
    'color': '#00FF00'
}
map.addLayer(
    region,
    vis_params,
    'region',
    bounds=region.getBounds()
)
mask_vis  = {
    'min': 0,
    'max': 1,
    'palette': ['#ffffff', '#008000']    # 0:白色, 1:绿色
}
ndvi_vis  = {
    'min': -0.2,
    'max': 0.6,
    'palette': ['#d7191c', '#fdae61', '#ffffc0', '#a6d96a', '#1a9641']
}
map.addLayer(NDVI_median,ndvi_vis, 'NDVI_median', bounds=region.getBounds())
map.addLayer(NDVI_max,ndvi_vis, 'NDVI_max', bounds=region.getBounds())
map.addLayer(NDVI_min,ndvi_vis, 'NDVI_min', bounds=region.getBounds())
map.addLayer(wheat,mask_vis, 'wheat', bounds=region.getBounds())    # 绿色区域为小麦
map

参考文献

潘力,夏浩铭,王瑞萌,等. 基于Google Earth Engine 的淮河流域越冬作物种植面积制图[J]. 农业工程学报,2021,37(18):211-218. doi:10.11975/j.issn.1002-6819.2021.18.025 http://www.tcsae.org

备注:案例以建立规则集提取冬小麦为主,主要借鉴参考文献中部分分类参数和指标用做流程测试,另仅使用 Landsat-8 数据,因此与参考文献中的成果有一定差异敬请谅解。

 

相关文章
|
15天前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
50 2
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
79 2
|
2月前
|
机器学习/深度学习 人工智能 UED
OpenAI o1模型:AI通用复杂推理的新篇章
OpenAI发布了其最新的AI模型——o1,这款模型以其独特的复杂推理能力和全新的训练方式,引起了业界的广泛关注。今天,我们就来深入剖析o1模型的特点、背后的原理,以及一些有趣的八卦信息。
306 73
|
25天前
|
人工智能 小程序 搜索推荐
成功案例分享|使用AI运动识别插件+微搭,快速搭建AI美体运动小程序
今天给大家分享一个最近使用我们的“AI运动识别小程序插件”+“微搭”搭建小程序的经典案例。
成功案例分享|使用AI运动识别插件+微搭,快速搭建AI美体运动小程序
|
7天前
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
19 4
|
16天前
|
人工智能 自然语言处理
从迷茫到精通:揭秘模型微调如何助你轻松驾驭AI新热点,解锁预训练模型的无限潜能!
【10月更文挑战第13天】本文通过简单的问题解答形式,结合示例代码,详细介绍了模型微调的全流程。从选择预训练模型、准备新任务数据集、设置微调参数,到进行微调训练和评估调优,帮助读者全面理解模型微调的技术细节和应用场景。
50 6
|
24天前
|
人工智能 自然语言处理 安全
【通义】AI视界|Adobe推出文生视频AI模型,迎战OpenAI和Meta
本文精选了过去24小时内的重要科技新闻,包括微软人工智能副总裁跳槽至OpenAI、Adobe推出文本生成视频的AI模型、Meta取消高端头显转而开发超轻量设备、谷歌与核能公司合作为数据中心供电,以及英伟达股价创下新高,市值接近3.4万亿美元。这些动态展示了科技行业的快速发展和激烈竞争。点击链接或扫描二维码获取更多资讯。
|
21天前
|
机器学习/深度学习 人工智能 TensorFlow
解锁AI潜力:让开源模型在私有环境绽放——手把手教你搭建专属智能服务,保障数据安全与性能优化的秘密攻略
【10月更文挑战第8天】本文介绍了如何将开源的机器学习模型(如TensorFlow下的MobileNet)进行私有化部署,包括环境准备、模型获取与转换、启动TensorFlow Serving服务及验证部署效果等步骤,适用于希望保护用户数据并优化服务性能的企业。
35 4
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
揭开模型微调Fine-Tuning的神秘面纱:如何在预训练基础上巧妙调整,解锁定制AI解决方案的秘密武器
【10月更文挑战第8天】模型微调是在预训练模型基础上,利用特定领域数据进一步训练,以优化模型在特定任务上的表现。此方法广泛应用于自然语言处理和计算机视觉等领域,通过调整预训练模型的部分或全部参数,结合适当的正则化手段,有效提升模型性能。例如,使用Hugging Face的Transformers库对BERT模型进行微调,以改善文本匹配任务的准确率。
39 1
|
2天前
|
人工智能 安全 Cloud Native