AI Earth ——开发者模式案例6:决策树模型实现冬小麦提取

简介: AI Earth ——开发者模式案例6:决策树模型实现冬小麦提取

决策树模型实现冬小麦提取

依据作物在不同物候期内卫星影像的光谱存在差异的特征,可建立冬小麦提取算法,进行像元尺度冬小麦提取。这里同样是使用的NDVI作为阈值提取条件,分别使用不同的聚合方式完成对影像的筛选,从而得出冬小麦种植面积的提取。

初始化环境

import aie
aie.Authenticate()
aie.Initialize()

指定需要检索的区域

feature_collection = aie.FeatureCollection('China_City') \
                        .filter(aie.Filter.eq('city', '亳州市'))
region = feature_collection.geometry()

影像检索

# 指定检索数据集,可设置检索的空间和时间范围,以及属性过滤条件(如云量过滤等)
def getl8_ndvi(startdate,enddate):
    dataset = aie.ImageCollection('LANDSAT_LC08_C02_T1_L2') \
                 .filterBounds(region) \
                 .filterDate(startdate, enddate) 
                 # .filter(aie.Filter.lte('eo:cloud_cover', 20.0))
    ndvi =  dataset.map(get_ndvi)  
    return ndvi
def get_ndvi(image):
    ndvi = image.normalizedDifference(['SR_B5', 'SR_B4'])
    return ndvi  
# 黄淮海地区冬小麦典型物候期。播种期 10-11月,旺长期3-4月,成熟期5-6月
NDVI_median = getl8_ndvi('2017-10-11', '2017-11-10').median().clip(region) 
NDVI_max = getl8_ndvi('2018-03-20', '2018-04-20').max().clip(region) 
NDVI_min = getl8_ndvi('2018-05-20', '2018-06-30').min().clip(region) 
# 冬小麦提取规则集
mask1 = NDVI_max.gt(aie.Image.constant(0.33))     # 过滤水体、不透水面、裸地等非植被区域
mask2 = NDVI_median.lt(aie.Image.constant(0.50))  # 过滤森林、春播作物
mask3 = NDVI_max.lte(aie.Image.constant(0.48))    # < 0.48存在
mask4 = NDVI_max.gt(aie.Image.constant(0.48))     # 区分植被区域和非植被区域,> 0.48 为植被区域
mask5 = NDVI_min.gt(aie.Image.constant(-0.12))    # 筛选冬小麦区域,成熟/收获期冬小麦植被指数下降
mask6 = NDVI_min.lt(aie.Image.constant(0.17))   
mask7 = NDVI_min.lt(NDVI_max.add(aie.Image.constant(0.5)))
wheat1 = mask1.And(mask2).And(mask3).And(mask5).And(mask6)
wheat2 = mask1.And(mask2).And(mask4).And(mask5).And(mask7)
wheat  = wheat1.add(wheat2).where((wheat1.add(wheat2)).gt(aie.Image.constant(0)),aie.Image.constant(1))

数据可视化

map = aie.Map(
    center=region.getCenter(),
    height=800,
    zoom=7
)
vis_params = {
    'color': '#00FF00'
}
map.addLayer(
    region,
    vis_params,
    'region',
    bounds=region.getBounds()
)
mask_vis  = {
    'min': 0,
    'max': 1,
    'palette': ['#ffffff', '#008000']    # 0:白色, 1:绿色
}
ndvi_vis  = {
    'min': -0.2,
    'max': 0.6,
    'palette': ['#d7191c', '#fdae61', '#ffffc0', '#a6d96a', '#1a9641']
}
map.addLayer(NDVI_median,ndvi_vis, 'NDVI_median', bounds=region.getBounds())
map.addLayer(NDVI_max,ndvi_vis, 'NDVI_max', bounds=region.getBounds())
map.addLayer(NDVI_min,ndvi_vis, 'NDVI_min', bounds=region.getBounds())
map.addLayer(wheat,mask_vis, 'wheat', bounds=region.getBounds())    # 绿色区域为小麦
map

参考文献

潘力,夏浩铭,王瑞萌,等. 基于Google Earth Engine 的淮河流域越冬作物种植面积制图[J]. 农业工程学报,2021,37(18):211-218. doi:10.11975/j.issn.1002-6819.2021.18.025 http://www.tcsae.org

备注:案例以建立规则集提取冬小麦为主,主要借鉴参考文献中部分分类参数和指标用做流程测试,另仅使用 Landsat-8 数据,因此与参考文献中的成果有一定差异敬请谅解。

 

相关文章
|
4天前
|
机器学习/深度学习 人工智能 编解码
AI视频生成也能自动补全!Wan2.1 FLF2V:阿里通义开源14B视频生成模型,用首尾两帧生成过渡动画
万相首尾帧模型是阿里通义开源的14B参数规模视频生成模型,基于DiT架构和高效视频压缩VAE,能够根据首尾帧图像自动生成5秒720p高清视频,支持多种风格变换和细节复刻。
117 7
AI视频生成也能自动补全!Wan2.1 FLF2V:阿里通义开源14B视频生成模型,用首尾两帧生成过渡动画
|
4天前
|
人工智能 自然语言处理 监控
基于DeepSeek R1改进的AI安全模型!MAI-DS-R1:微软开源AI安全卫士,敏感话题响应率高达99.3%
微软开源的MAI-DS-R1是基于DeepSeek R1改进的AI模型,通过后训练优化将敏感话题响应率提升至99.3%,同时将有害内容风险降低50%,保持原版推理能力并增强多语言支持。
89 3
基于DeepSeek R1改进的AI安全模型!MAI-DS-R1:微软开源AI安全卫士,敏感话题响应率高达99.3%
|
1天前
|
机器学习/深度学习 人工智能 编解码
这个AI能拍无限长电影!SkyReels-V2:昆仑万维开源无限时长电影生成模型!
SkyReels-V2是昆仑万维推出的突破性视频生成模型,基于扩散强迫框架和多模态大语言模型技术,支持生成理论上无限时长的连贯视频内容,在影视制作、广告创意等领域展现强大潜力。
89 7
这个AI能拍无限长电影!SkyReels-V2:昆仑万维开源无限时长电影生成模型!
|
1天前
|
数据采集 人工智能 自动驾驶
从虚拟到现实!Aether:上海AI Lab开源的生成式世界模型,4D动态重建+视觉规划全搞定
Aether是上海AI Lab开源的生成式世界模型,通过三维时空建模与生成式建模的深度融合,实现了4D动态重建、动作条件视频预测和目标导向视觉规划三大核心能力。
35 1
从虚拟到现实!Aether:上海AI Lab开源的生成式世界模型,4D动态重建+视觉规划全搞定
|
2天前
|
存储 人工智能 边缘计算
当 AI 进入「算力密集时代」:你的服务器能跑通大模型吗?
本文深入探讨AI服务器在技术落地中的核心瓶颈问题,结合实战经验解析从模型训练到端侧部署的算力优化策略。内容涵盖三大典型场景的算力需求差异、GPU服务器选型的五大反直觉真相、实战优化方法(如混合精度训练与硬件资源监控),以及边缘AI部署挑战和解决方案。同时提供算力弹性扩展策略、模型生命周期管理及合规性建议,帮助读者构建可持续发展的算力体系。文末附有获取更多资源的指引。
46 17
|
机器学习/深度学习 数据采集 人工智能
StartDT AI Lab | 智能运筹助力企业提升决策效率、优化决策质量
奇点云决策引擎更关注执行过程中的计划决策效率和决策质量。
1271 0
|
8天前
|
人工智能 开发框架 安全
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力,用户只需提交 npx 命令即可“零改造”将开源 MCP Server 部署到云上,函数计算 FC 会准备好计算资源,并以弹性、可靠的方式运行 MCP 服务,按实际调用时长和次数计费,欢迎你在阿里云百炼和函数计算 FC 上体验 MCP 服务。
119 29
|
24天前
|
人工智能 数据可视化 API
36.7K star!拖拽构建AI流程,这个开源LLM应用框架绝了!
`Flowise` 是一款革命性的低代码LLM应用构建工具,开发者通过可视化拖拽界面,就能快速搭建基于大语言模型的智能工作流。该项目在GitHub上线不到1年就斩获**36.7K星标**,被开发者誉为"AI时代的乐高积木"。
130 8
|
22天前
|
人工智能 API 计算机视觉
AI-ClothingTryOn:服装店老板连夜下架试衣间!基于Gemini开发的AI试衣应用,一键生成10种穿搭效果
AI-ClothingTryOn是基于Google Gemini技术的虚拟试衣应用,支持人物与服装照片智能合成,可生成多达10种试穿效果版本,并提供自定义提示词优化功能。
154 17
AI-ClothingTryOn:服装店老板连夜下架试衣间!基于Gemini开发的AI试衣应用,一键生成10种穿搭效果
|
14天前
|
存储 人工智能 监控
一键部署 Dify + MCP Server,高效开发 AI 智能体应用
本文将着重介绍如何通过 SAE 快速搭建 Dify AI 研发平台,依托 Serverless 架构提供全托管、免运维的解决方案,高效开发 AI 智能体应用。
2039 63

热门文章

最新文章