改进YOLOv8:添加CBAM注意力机制(涨点明显)

简介: 改进YOLOv8:添加CBAM注意力机制(涨点明显)

1、计算机视觉中的注意力机制

计算机视觉中的注意力机制是一种聚焦于局部信息的机制,其基本思想是让系统学会忽略无关信息而关注重点信息。这种机制在图像识别、物体检测和人脸识别等任务中都发挥了重要作用。

注意力机制的实现方法有多种,其中包括空间注意力模型、通道注意力模型、空间和通道混合注意力模型等。这些模型可以将图像中的关键信息提取出来,并通过抑制无用信息来提高模型的性能。在计算机视觉中,注意力机制被广泛应用于各种任务,如目标检测、图像分类、人脸识别等。

通过引入注意力机制,计算机视觉系统可以更加高效地处理图像数据,减少计算资源的浪费,同时提高模型的性能和准确性。在未来,随着深度学习技术的不断发展,注意力机制在计算机视觉领域的应用前景将会更加广阔。

1.1 CBAM:通道注意力和空间注意力的集成者

CBAM(Convolutional Block Attention Module)是一种注意力机制,它结合了通道注意力和空间注意力来提高卷积神经网络的性能。通道注意力模块通过计算每个通道的重要性,以区分不同通道之间的特征。空间注意力模块则计算每个像素在空间上的重要性,以更好地捕捉图像中的空间结构。

论文题目:《CBAM: Convolutional Block Attention Module》
论文地址: https://arxiv.org/pdf/1807.06521.pdf

上图可以看到,CBAM包含CAM(Channel Attention Module)和SAM(Spartial Attention Module)两个子模块,分别进行通道和空间上的Attention。这样不只能够节约参数和计算力,并且保证了其能够做为即插即用的模块集成到现有的网络架构中去。

CBAM的工作原理如下:

  1. 通道注意力模块:通过在通道维度上对输入特征图进行最大池化和平均池化,然后将这两个池化结果输入到一个全连接层中,最后输出一个通道注意力权重向量。这个权重向量可以用来加权输入特征图的每个通道,以增强重要的通道特征并抑制不重要的通道特征。
  2. 空间注意力模块:类似于通道注意力模块,空间注意力模块也是通过对输入特征图进行操作来计算每个像素的重要性。它通常使用全局平均池化来获取每个像素的特征向量,然后通过一个全连接层来输出每个像素的权重。这些权重可以用于加权输入特征图的每个像素,以强调图像中的重要区域并抑制不重要的区域。

通过将通道注意力和空间注意力模块串联起来,可以得到一个完整的CBAM模块,用于插入到卷积神经网络中以提升模型性能。CBAM可以显著提高计算机视觉任务的性能,例如目标检测、图像分类和语义分割等。

2.Yolov8加入CBAM

2.1 CBAM加入cony.py中(相当于yolov5中的common.py)

"""
通道注意力模型: 通道维度不变,压缩空间维度。该模块关注输入图片中有意义的信息。
1)假设输入的数据大小是(b,c,w,h)
2)通过自适应平均池化使得输出的大小变为(b,c,1,1)
3)通过2d卷积和sigmod激活函数后,大小是(b,c,1,1)
4)将上一步输出的结果和输入的数据相乘,输出数据大小是(b,c,w,h)。
"""
class ChannelAttention(nn.Module):
    # Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet
    def __init__(self, channels: int) -> None:
        super().__init__()
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
        self.act = nn.Sigmoid()
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x * self.act(self.fc(self.pool(x)))
"""
空间注意力模块:空间维度不变,压缩通道维度。该模块关注的是目标的位置信息。
1) 假设输入的数据x是(b,c,w,h),并进行两路处理。
2)其中一路在通道维度上进行求平均值,得到的大小是(b,1,w,h);另外一路也在通道维度上进行求最大值,得到的大小是(b,1,w,h)。
3) 然后对上述步骤的两路输出进行连接,输出的大小是(b,2,w,h)
4)经过一个二维卷积网络,把输出通道变为1,输出大小是(b,1,w,h)
4)将上一步输出的结果和输入的数据x相乘,最终输出数据大小是(b,c,w,h)。
"""
class SpatialAttention(nn.Module):
    # Spatial-attention module
    def __init__(self, kernel_size=7):
        super().__init__()
        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
        self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.act = nn.Sigmoid()
    def forward(self, x):
        return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))
class CBAM(nn.Module):
    # Convolutional Block Attention Module
    def __init__(self, c1, kernel_size=7):  # ch_in, kernels
        super().__init__()
        self.channel_attention = ChannelAttention(c1)
        self.spatial_attention = SpatialAttention(kernel_size)
    def forward(self, x):
        return self.spatial_attention(self.channel_attention(x))

2.2 CBAM加入tasks.py中(相当于yolov5中的yolo.py)

from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify,
                                    Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, Focus,
                                    GhostBottleneck, GhostConv, Segment,CBAM, GAM_Attention , ResBlock_CBAM)

如图所示:

2.4 还是在tasks.py,def parse_model(d, ch, verbose=True):函数中

#        添加CBAM注意力机制
        elif m is CBAM:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1,  *args[1:]]

如图所示:

2.5 CBAM修改对应yaml

CBAM加入yolov8

将yolov8.yaml复制一份,改为yolov8n-CBAM.yaml

路径:ultralytics/ultralytics/cfg/models/v8/yolov8n-CBAM.yaml

yolov8n-CBAM.yaml

# Ultralytics YOLO 🚀, GPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 7  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
  - [-1, 1, CBAM, [512]]
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 16 (P3/8-small)
  - [-1, 1, CBAM, [256]]
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 20 (P4/16-medium)
  - [-1, 1, CBAM, [512]]
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 24 (P5/32-large)
  - [-1, 1, CBAM, [1024]]
  - [[17, 21, 25], 1, Detect, [nc]]  # Detect(P3, P4, P5)

可以看到在head层添加了四层CBAM注意力机制,至此完成!

目录
相关文章
|
4月前
|
机器学习/深度学习 计算机视觉 异构计算
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
|
4月前
|
机器学习/深度学习 自然语言处理 计算机视觉
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数
|
1月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
57 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
|
4月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络
【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络
|
4月前
|
机器学习/深度学习 算法 测试技术
【YOLOv8改进 - 注意力机制】Focused Linear Attention :全新的聚焦线性注意力模块
YOLOv8专栏探讨了该目标检测算法的创新改进,包括使用聚焦线性注意力模块,解决了Transformer在视觉任务中的效率和表达力问题。该模块增强自注意力,提高焦点能力和特征多样性,保持线性复杂度。文章提供了实证证据证明其在多个基准上的性能提升,并在GitHub上发布了代码。论文和更多实战案例链接见文中。
|
4月前
|
机器学习/深度学习 自然语言处理 并行计算
【YOLOv8改进 -注意力机制】Mamba之MLLAttention :基于Mamba和线性注意力Transformer的模型
YOLOv8专栏探讨了该目标检测模型的创新改进,包括使用Mamba模型的线性注意力Transformer变体,称为MLLA。Mamba的成功关键在于遗忘门和块设计,MLLA结合了这些优点,提升了视觉任务的性能。文章提供全面分析,并提出MLLA模型,其在效率和准确性上超过多种视觉模型。论文和代码可在提供的链接中找到。MLLA Block的代码示例展示了如何整合关键组件以实现高效运算。更多配置详情见相关链接。
|
4月前
|
机器学习/深度学习 测试技术 网络架构
【YOLOv10改进-注意力机制】MSCAAttention多尺度卷积注意力
YOLOv10专栏介绍了一种新的卷积网络架构SegNeXt,它在语义分割任务中展现出优于Transformer模型的效率和效果。SegNeXt通过名为Multi-Scale Convolutional Attention (MSCA)的组件,结合局部信息聚合、多尺度上下文捕获和通道关系模拟,提升了性能。在多个数据集上,SegNeXt以较少参数实现了超过现有SOTA的性能,特别是在Pascal VOC 2012上,以1/10的参数量达到90.6%的mIoU。YOLOv10引入了MSCA模块,用于增强目标检测的上下文关注。相关代码和配置详情可在链接中找到。
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-注意力机制】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了ViT的改进,提出DilateFormer,它结合多尺度扩张注意力(MSDA)来平衡计算效率和关注域大小。MSDA利用局部稀疏交互减少冗余,通过不同头部的扩张率捕获多尺度特征。DilateFormer在保持高性能的同时,计算成本降低70%,在ImageNet-1K、COCO和ADE20K任务上取得领先结果。YOLOv8引入了MultiDilatelocalAttention模块,用于实现膨胀注意力。更多详情及配置见相关链接。
|
5月前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv8改进 | Neck | 添加双向特征金字塔BiFPN【含二次独家创新】
💡【YOLOv8专栏】探索特征融合新高度!BiFPN优化版提升检测性能🔍。双向加权融合解决信息丢失痛点,统一缩放增强模型效率🚀。论文&官方代码直达链接,模块化教程助你轻松实践📝。立即阅读:[YOLOv8涨点全攻略](https://blog.csdn.net/m0_67647321/category_12548649.html)✨