python数据可视化 - matplotlib专题:带数据标签的双batch的Bar图绘制示例

简介: python数据可视化 - matplotlib专题:带数据标签的双batch的Bar图绘制示例

基于matplotlib的双Batch带标签bar图生成函数


【代码实现】

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
def barchart_ax_2Batch(title,
                    xlabel,ylabel,
                    batch1_name,batch2_name,
                    x_text,batch1,batch2,
                    background_color,Batch1_color,Batch2_color):
    plt.rcParams['font.sans-serif'] = ['KaiTi']           # 指定默认字体以解决中文乱码
    x = np.arange(len(x_text))
    width = 0.35
    fig, ax = plt.subplots()
    rects1 = ax.bar(x - width/2, batch1, width, label = batch1_name, color = Batch1_color)   
                                            #- width/2右移一半宽度
    rects2 = ax.bar(x + width/2, batch2, width, label = batch2_name, color = Batch2_color)   
                                            #+ width/2左移一半宽度 否则两图会重合
    ax.patch.set_facecolor(background_color)     #设置背景色
     # 设置各种标签名称的数据来源
    ax.set_title(title)              #添加标题
    ax.set_xlabel(xlabel)           #添加横轴标题(标签)
    ax.set_ylabel(ylabel)           #添加纵轴标题(标签)
    ax.set_xticks(x)               #以列表x中的内容为所作图横轴刻度
    ax.set_xticklabels(x_text)       #添加横轴数据/文本
    ax.legend()                  #添加图例
    #为Batch1添加数据标签
    for rect in rects1:
        height = rect.get_height()
        ax.annotate('{}'.format(height),      
            xy=(rect.get_x() + rect.get_width() / 2, height),
            xytext=(0,3),                                # 3 points vertical offset
            textcoords="offset points",
            ha='center', va='bottom')
    #为Batch2添加数据标签
    for rect in rects2:
        height = rect.get_height()
        ax.annotate('{}'.format(height),      
            xy=(rect.get_x() + rect.get_width() / 2, height),
            xytext=(0,3), 
            textcoords="offset points",
            ha='center', va='bottom')
            plt.grid(linestyle = "dotted",color = "r")    #添加网格线
    fig.tight_layout()
    plt.show()

【调用实例】

新手调用时,请尽量按照两部走的原则:

  • 1.先定义各种待传入函数接口的数据,
  • 2.调用函数。
    参数很多时不要把所有参数的取值都写到调用函数处,这样将降低可读性。
#定义各种名称
title = '期末平均考成绩比较图'
xlabel = '科目'
ylabel = '得分'
batch1_name = '高2020-07班'
batch2_name = '高2020-09班'
#定义数据值
x_text = ['语文', '数学', '英语', '物理', '化学' ,'生物']
batch1 = [87, 118, 101, 106, 76, 71]
batch2 = [112, 97, 116, 99, 89, 83]
#定义颜色
background_color = "lightskyblue"
Batch1_color = "red"
Batch2_color = "blue"
#最后调用函数以绘图
barchart_ax_2Batch(title,
                 xlabel,ylabel,
                 batch1_name,batch2_name,
                 x_text,batch1,batch2,
                 background_color,Batch1_color,Batch2_color)

生成图片效果如下:

内容仅供参考,如需使用请指明出处。



202012.29.更新/回复

【事项记录】:有同学留言,说想要绘制百分比标签的。其实这不难。可以如下思路操作:

  • 1.输入数据前先表列表中的数据标准化,即处理成百分数的一百倍。比如百分之97.15%则处理成97.15
  • 2.对函数中格式化操作稍微更改。
    还是用上面的数据举个栗子吧,假设我们想得到两个班同学各科成绩占满分的占比。
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
def bar_2batch( x_labels,y1,y2,
                       title=None,xtitle=None,ytitle=None,
                       legend1=None,legend2=None,
                       background_color="#ffffff",Batch1_color="#5B9BD5",Batch2_color="#ED7D31"):
   plt.rcParams['font.sans-serif'] = ['KaiTi']
   pylab.rcParams['figure.figsize'] = (7.0, 4.0)
   x = np.arange(len(x_labels))
   width = 0.25
   fig, ax = plt.subplots()
   rects1 = ax.bar(x - width/2, y1, width, label = legend1, color = Batch1_color)   
   rects2 = ax.bar(x + width/2, y2, width, label = legend2, color = Batch2_color)   
   ax.patch.set_facecolor(background_color)
   ax.set_title(title)
   ax.set_xlabel(xtitle)
   ax.set_ylabel(ytitle) 
   ax.set_xticks(x) 
   ax.set_xticklabels(x_labels)
   if (legend1 is not None) or (legend1 is not None):  
       ax.legend()
   def add_dlb(rects):
       for rect in rects:
           height = rect.get_height()
           ax.annotate('{0:.2f}%'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height),xytext=(0,3), textcoords="offset >points", ha='center', va='bottom')
   add_dlb(rects1)
   add_dlb(rects2)
   plt.grid(linestyle = "-",color = "#DBDBDB") 
   fig.tight_layout()
   plt.show()
# 定义各种名称
title = '两班学生各科目成绩满分比'
xtitle = '科目'
ytitle = '得分'
legend1 = '高2020-07班'
legend2 = '高2020-09班'
# 定义数据值
x_labels = ['语文', '数学', '英语', '物理', '化学' ,'生物']
y1 = [87/150*100, 118/150*100, 101/150*100, 96/100*100, 76/100*100, 71/100*100]
y2 = [112/150*100, 97/150*100, 116/150*100, 99/100*100, 89/100*100, 83/100*100]
# 最后调用函数以绘图
bar_2batch(x_labels,y1,y2,title=title,legend1=legend1,legend2=legend2)

效果如图所示:

由于定义了默认参数,当不需要要标题等参数的时候,你甚至也可以只给出数据。比如:

bar_2batch(x_labels,y1,y2)

其运行结果为:


20201230 更新日志

顺便补充一点,如果绘制单Batch的,又想使用seaborn主题,还想在jupyter中改变尺寸大小,好。那么一下这个内容适合你。当然多Batch只要将之前的代码同理稍作修改就好了。


直接给出代码吧:

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pylab
import seaborn as sns
sns.set(style="darkgrid")
def bar_1batch( x_labels,y1,title=None,xtitle=None,ytitle=None,legend1=None,Batch1_color="#5B9BD5"):
    plt.rcParams['font.sans-serif'] = ['KaiTi']           # 指定默认字体以解决中文乱码
    x = np.arange(len(x_labels))
    width = 0.75
    fig, ax = plt.subplots()
    rects1 = ax.bar(x - width/2, y1, width, label = legend1, color = Batch1_color)
    if legend1 != None:
        ax.legend()                        #添加图例
    ax.set_title(title)               #添加标题
    ax.set_xlabel(xtitle)             #添加横轴标题(标签)
    ax.set_ylabel(ytitle)             #添加纵轴标题(标签)
    ax.set_xticks(x)                   #以列表x中的内容为所作图横轴刻度
    ax.set_xticklabels(x_labels)       #添加横轴数据/文本
    pylab.rcParams['figure.figsize'] = (16.0, 5.0)
    plt.rcParams['font.sans-serif'] = ['KaiTi']
    matplotlib.rcParams['axes.unicode_minus'] = False
    def add_dlb(rects):
        for rect in rects:
            height = rect.get_height()
            ax.annotate('{}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height),xytext=(0,3), textcoords="offset points", ha='center', va='bottom')
    add_dlb(rects1)
    plt.grid(linestyle = "-",color = "#DBDBDB")
    fig.tight_layout()
    plt.show()
# 定义数据
n=36
x_labels = [str(i) for i in range(n)]
y1 = np.random.randint(10,90,size=(1,n),dtype=int)[0]
#最后调用写好的函数绘图
bar_1batch(x_labels,y1)

在jupyter中运行结果如下图所示:

这样就控制图像的大小让我们看起来更“爽”。

目录
相关文章
|
19天前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
341 1
|
20天前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
223 0
|
2月前
|
机器学习/深度学习 新能源 调度
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
245 1
|
2月前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
1月前
|
存储 监控 API
Python实战:跨平台电商数据聚合系统的技术实现
本文介绍如何通过标准化API调用协议,实现淘宝、京东、拼多多等电商平台的商品数据自动化采集、清洗与存储。内容涵盖技术架构设计、Python代码示例及高阶应用(如价格监控系统),提供可直接落地的技术方案,帮助开发者解决多平台数据同步难题。
|
1月前
|
存储 JSON 算法
Python集合:高效处理无序唯一数据的利器
Python集合是一种高效的数据结构,具备自动去重、快速成员检测和无序性等特点,适用于数据去重、集合运算和性能优化等场景。本文通过实例详解其用法与技巧。
109 0
|
3月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
12天前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
21天前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
29天前
|
数据采集 关系型数据库 MySQL
python爬取数据存入数据库
Python爬虫结合Scrapy与SQLAlchemy,实现高效数据采集并存入MySQL/PostgreSQL/SQLite。通过ORM映射、连接池优化与批量提交,支持百万级数据高速写入,具备良好的可扩展性与稳定性。

推荐镜像

更多