python数据可视化 - matplotlib专题:带数据标签的双batch的Bar图绘制示例

简介: python数据可视化 - matplotlib专题:带数据标签的双batch的Bar图绘制示例

基于matplotlib的双Batch带标签bar图生成函数


【代码实现】

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
def barchart_ax_2Batch(title,
                    xlabel,ylabel,
                    batch1_name,batch2_name,
                    x_text,batch1,batch2,
                    background_color,Batch1_color,Batch2_color):
    plt.rcParams['font.sans-serif'] = ['KaiTi']           # 指定默认字体以解决中文乱码
    x = np.arange(len(x_text))
    width = 0.35
    fig, ax = plt.subplots()
    rects1 = ax.bar(x - width/2, batch1, width, label = batch1_name, color = Batch1_color)   
                                            #- width/2右移一半宽度
    rects2 = ax.bar(x + width/2, batch2, width, label = batch2_name, color = Batch2_color)   
                                            #+ width/2左移一半宽度 否则两图会重合
    ax.patch.set_facecolor(background_color)     #设置背景色
     # 设置各种标签名称的数据来源
    ax.set_title(title)              #添加标题
    ax.set_xlabel(xlabel)           #添加横轴标题(标签)
    ax.set_ylabel(ylabel)           #添加纵轴标题(标签)
    ax.set_xticks(x)               #以列表x中的内容为所作图横轴刻度
    ax.set_xticklabels(x_text)       #添加横轴数据/文本
    ax.legend()                  #添加图例
    #为Batch1添加数据标签
    for rect in rects1:
        height = rect.get_height()
        ax.annotate('{}'.format(height),      
            xy=(rect.get_x() + rect.get_width() / 2, height),
            xytext=(0,3),                                # 3 points vertical offset
            textcoords="offset points",
            ha='center', va='bottom')
    #为Batch2添加数据标签
    for rect in rects2:
        height = rect.get_height()
        ax.annotate('{}'.format(height),      
            xy=(rect.get_x() + rect.get_width() / 2, height),
            xytext=(0,3), 
            textcoords="offset points",
            ha='center', va='bottom')
            plt.grid(linestyle = "dotted",color = "r")    #添加网格线
    fig.tight_layout()
    plt.show()

【调用实例】

新手调用时,请尽量按照两部走的原则:

  • 1.先定义各种待传入函数接口的数据,
  • 2.调用函数。
    参数很多时不要把所有参数的取值都写到调用函数处,这样将降低可读性。
#定义各种名称
title = '期末平均考成绩比较图'
xlabel = '科目'
ylabel = '得分'
batch1_name = '高2020-07班'
batch2_name = '高2020-09班'
#定义数据值
x_text = ['语文', '数学', '英语', '物理', '化学' ,'生物']
batch1 = [87, 118, 101, 106, 76, 71]
batch2 = [112, 97, 116, 99, 89, 83]
#定义颜色
background_color = "lightskyblue"
Batch1_color = "red"
Batch2_color = "blue"
#最后调用函数以绘图
barchart_ax_2Batch(title,
                 xlabel,ylabel,
                 batch1_name,batch2_name,
                 x_text,batch1,batch2,
                 background_color,Batch1_color,Batch2_color)

生成图片效果如下:

内容仅供参考,如需使用请指明出处。



202012.29.更新/回复

【事项记录】:有同学留言,说想要绘制百分比标签的。其实这不难。可以如下思路操作:

  • 1.输入数据前先表列表中的数据标准化,即处理成百分数的一百倍。比如百分之97.15%则处理成97.15
  • 2.对函数中格式化操作稍微更改。
    还是用上面的数据举个栗子吧,假设我们想得到两个班同学各科成绩占满分的占比。
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
def bar_2batch( x_labels,y1,y2,
                       title=None,xtitle=None,ytitle=None,
                       legend1=None,legend2=None,
                       background_color="#ffffff",Batch1_color="#5B9BD5",Batch2_color="#ED7D31"):
   plt.rcParams['font.sans-serif'] = ['KaiTi']
   pylab.rcParams['figure.figsize'] = (7.0, 4.0)
   x = np.arange(len(x_labels))
   width = 0.25
   fig, ax = plt.subplots()
   rects1 = ax.bar(x - width/2, y1, width, label = legend1, color = Batch1_color)   
   rects2 = ax.bar(x + width/2, y2, width, label = legend2, color = Batch2_color)   
   ax.patch.set_facecolor(background_color)
   ax.set_title(title)
   ax.set_xlabel(xtitle)
   ax.set_ylabel(ytitle) 
   ax.set_xticks(x) 
   ax.set_xticklabels(x_labels)
   if (legend1 is not None) or (legend1 is not None):  
       ax.legend()
   def add_dlb(rects):
       for rect in rects:
           height = rect.get_height()
           ax.annotate('{0:.2f}%'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height),xytext=(0,3), textcoords="offset >points", ha='center', va='bottom')
   add_dlb(rects1)
   add_dlb(rects2)
   plt.grid(linestyle = "-",color = "#DBDBDB") 
   fig.tight_layout()
   plt.show()
# 定义各种名称
title = '两班学生各科目成绩满分比'
xtitle = '科目'
ytitle = '得分'
legend1 = '高2020-07班'
legend2 = '高2020-09班'
# 定义数据值
x_labels = ['语文', '数学', '英语', '物理', '化学' ,'生物']
y1 = [87/150*100, 118/150*100, 101/150*100, 96/100*100, 76/100*100, 71/100*100]
y2 = [112/150*100, 97/150*100, 116/150*100, 99/100*100, 89/100*100, 83/100*100]
# 最后调用函数以绘图
bar_2batch(x_labels,y1,y2,title=title,legend1=legend1,legend2=legend2)

效果如图所示:

由于定义了默认参数,当不需要要标题等参数的时候,你甚至也可以只给出数据。比如:

bar_2batch(x_labels,y1,y2)

其运行结果为:


20201230 更新日志

顺便补充一点,如果绘制单Batch的,又想使用seaborn主题,还想在jupyter中改变尺寸大小,好。那么一下这个内容适合你。当然多Batch只要将之前的代码同理稍作修改就好了。


直接给出代码吧:

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pylab
import seaborn as sns
sns.set(style="darkgrid")
def bar_1batch( x_labels,y1,title=None,xtitle=None,ytitle=None,legend1=None,Batch1_color="#5B9BD5"):
    plt.rcParams['font.sans-serif'] = ['KaiTi']           # 指定默认字体以解决中文乱码
    x = np.arange(len(x_labels))
    width = 0.75
    fig, ax = plt.subplots()
    rects1 = ax.bar(x - width/2, y1, width, label = legend1, color = Batch1_color)
    if legend1 != None:
        ax.legend()                        #添加图例
    ax.set_title(title)               #添加标题
    ax.set_xlabel(xtitle)             #添加横轴标题(标签)
    ax.set_ylabel(ytitle)             #添加纵轴标题(标签)
    ax.set_xticks(x)                   #以列表x中的内容为所作图横轴刻度
    ax.set_xticklabels(x_labels)       #添加横轴数据/文本
    pylab.rcParams['figure.figsize'] = (16.0, 5.0)
    plt.rcParams['font.sans-serif'] = ['KaiTi']
    matplotlib.rcParams['axes.unicode_minus'] = False
    def add_dlb(rects):
        for rect in rects:
            height = rect.get_height()
            ax.annotate('{}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height),xytext=(0,3), textcoords="offset points", ha='center', va='bottom')
    add_dlb(rects1)
    plt.grid(linestyle = "-",color = "#DBDBDB")
    fig.tight_layout()
    plt.show()
# 定义数据
n=36
x_labels = [str(i) for i in range(n)]
y1 = np.random.randint(10,90,size=(1,n),dtype=int)[0]
#最后调用写好的函数绘图
bar_1batch(x_labels,y1)

在jupyter中运行结果如下图所示:

这样就控制图像的大小让我们看起来更“爽”。

目录
相关文章
|
26天前
|
数据挖掘 数据处理 开发者
Python3 自定义排序详解:方法与示例
Python的排序功能强大且灵活,主要通过`sorted()`函数和列表的`sort()`方法实现。两者均支持`key`参数自定义排序规则。本文详细介绍了基础排序、按字符串长度或元组元素排序、降序排序、多条件排序及使用`lambda`表达式和`functools.cmp_to_key`进行复杂排序。通过示例展示了如何对简单数据类型、字典、类对象及复杂数据结构(如列车信息)进行排序。掌握这些技巧可以显著提升数据处理能力,为编程提供更强大的支持。
32 10
|
2月前
|
数据可视化 数据挖掘 DataX
Python 数据可视化的完整指南
Python 数据可视化在数据分析和科学研究中至关重要,它能帮助我们理解数据、发现规律并以直观方式呈现复杂信息。Python 提供了丰富的可视化库,如 Matplotlib、Seaborn、Plotly 和 Pandas 的绘图功能,使得图表生成简单高效。本文通过具体代码示例和案例,介绍了折线图、柱状图、饼图、散点图、箱形图、热力图和小提琴图等常用图表类型,并讲解了自定义样式和高级技巧,帮助读者更好地掌握 Python 数据可视化工具的应用。
126 3
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
105 8
|
2月前
|
API Python
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
68 11
|
2月前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
在数据的海洋里,我们如何能够不迷失方向?通过数据可视化的力量,我们可以将复杂的数据集转化为易于理解的图形和图表。本文旨在为初学者提供一份简明的入门手册,介绍如何使用Python中的Matplotlib库来揭示数据背后的故事。我们将从基础的图表开始,逐步深入到更高级的可视化技术,确保每个步骤都清晰易懂,让初学者也能轻松上手。让我们开始绘制属于你自己的数据图谱吧!
|
3月前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
91 6
|
3月前
|
机器学习/深度学习 人工智能 数据可视化
使用Python进行数据可视化:探索与实践
在数字时代的浪潮中,数据可视化成为了沟通复杂信息和洞察数据背后故事的重要工具。本文将引导读者通过Python这一强大的编程语言,利用其丰富的库函数,轻松入门并掌握数据可视化的基础技能。我们将从简单的图表创建开始,逐步深入到交互式图表的制作,最终实现复杂数据的动态呈现。无论你是数据分析新手,还是希望提升报告吸引力的专业人士,这篇文章都将是你的理想指南。
81 9
|
3月前
|
数据可视化 数据处理 Python
Python编程中的数据可视化技术
在Python编程中,数据可视化是一项强大的工具,它能够将复杂的数据集转化为易于理解的图形。本文将介绍如何使用matplotlib和pandas这两个流行的Python库来实现数据可视化,并展示一些实用的代码示例。通过这些示例,读者将学会如何创建各种图表,包括折线图、柱状图和散点图等,以便更好地理解和呈现数据。
|
3月前
|
数据可视化 数据挖掘 定位技术
Python和Geopandas进行地理数据可视化
【10月更文挑战第22天】本文介绍了如何使用Python和Geopandas进行地理数据可视化和分析,涵盖从准备工作、加载数据、数据探索与处理、地理数据可视化、空间分析与查询到交互式地理数据可视化等内容。通过丰富的代码示例和案例演示,帮助读者掌握地理数据分析的基本方法,为实际应用提供支持。
220 19
|
3月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。

推荐镜像

更多