基于FPGA的图像RGB转HSV实现,包含testbench和MATLAB辅助验证程序

简介: 基于FPGA的图像RGB转HSV实现,包含testbench和MATLAB辅助验证程序

1.算法运行效果图预览

69a3e6e5d1f2fab609ff06d082dfdc98_82780907_202401252330130053637405_Expires=1706197213&Signature=50RwwxrFJu6uC7N1ucPQLc%2Bmu58%3D&domain=8.jpeg

将FPGA的仿真结果导入到matlab中:

a79569a11cbb6b1ea8809265410d350c_82780907_202401252330230240335121_Expires=1706197223&Signature=TqmHgC3C6fE6CNDyWZoicqowZgQ%3D&domain=8.jpeg

2.算法运行软件版本
vivado2019.2

matlab2022a

3.算法理论概述
在数字图像处理中,色彩空间的转换是常见的操作。其中,RGB和HSV是两种经常使用的色彩空间。RGB基于红、绿、蓝三种颜色的组合,而HSV则代表色相、饱和度和明度。本文将探讨如何基于FPGA实现RGB到HSV的转换,并深入讨论其背后的原理和数学公式。

3.1. RGB与HSV色彩空间
RGB色彩空间:RGB色彩模型采用三维笛卡尔坐标系统,红、绿、蓝三原色位于三个角上。原色值位于坐标轴上的点,而其他颜色则位于立方体内部。通过三原色的不同强度组合,可以得到各种颜色。 RGB是从颜色发光的原理来设计定的,通俗点说它的颜色混合方式就好像有红、绿、蓝三盏灯,当它们的光相互叠合的时候,色彩相混,而亮度却等于两者亮度之总和,越混合亮度越高,即加法混合。红、绿、蓝三个颜色通道每种色各分为256阶亮度,在0时“灯”最弱——是关掉的,而在255时“灯”最亮。当三色灰度数值相同时,产生不同灰度值的灰色调,即三色灰度都为0时,是最暗的黑色调;三色灰度都为255时,是最亮的白色调。在电脑中,RGB的所谓“多少”就是指亮度,并使用整数来表示。通常情况下,RGB各有256级亮度,用数字表示为从0、1、2...直到255。注意虽然数字最高是255,但0也是数值之一,因此共256级。

   HSV色彩空间:HSV色彩空间更加接近人类视觉对色彩的感知。其中,H(Hue)代表色相,表示颜色的基本属性;S(Saturation)代表饱和度,表示颜色的深浅;V(Value)代表明度,表示颜色的明亮程度。

   HSV是一种比较直观的颜色模型,所以在许多图像编辑工具中应用比较广泛,这个模型中颜色的参数分别是:色调(H, Hue),饱和度(S,Saturation),明度(V, Value)。

色调H

    用角度度量,取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补色是:黄色为60°,青色为180°,品红为300°;

饱和度S

    饱和度S表示颜色接近光谱色的程度。一种颜色,可以看成是某种光谱色与白色混合的结果。其中光谱色所占的比例愈大,颜色接近光谱色的程度就愈高,颜色的饱和度也就愈高。饱和度高,颜色则深而艳。光谱色的白光成分为0,饱和度达到最高。通常取值范围为0%~100%,值越大,颜色越饱和。

明度V

    明度表示颜色明亮的程度,对于光源色,明度值与发光体的光亮度有关;对于物体色,此值和物体的透射比或反射比有关。通常取值范围为0%(黑)到100%(白)。

3.2. RGB到HSV转换原理
RGB到HSV的转换涉及以下步骤:

首先将RGB值标准化到[0,1]范围。对于8位的RGB值,可以通过除以255来完成这一步。

4068e8b779f469bf48b75dfaef1802dc_82780907_202401252330340787578791_Expires=1706197234&Signature=YDjf36juv%2FPIiXI%2F3FjsyTCZHTI%3D&domain=8.png

然后计算色相H,饱和度S,明度V

c83fb1687dee6c4bc3f085cd850f5bee_82780907_202401252330450131234287_Expires=1706197245&Signature=9h5GUT8RhYpgkdpZ%2Fj4JiCEFpHM%3D&domain=8.png

4.部分核心程序

````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2023/08/01
// Design Name:
// Module Name: RGB2gray
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test_image;

reg i_clk;
reg i_rst;
reg [7:0] Rbuff [0:100000];
reg [7:0] Gbuff [0:100000];
reg [7:0] Bbuff [0:100000];
reg [7:0] i_Ir,i_Ig,i_Ib;
wire [7:0] o_H,o_S,o_V;
integer fids1,dat1,fids2,dat2,fids3,dat3,jj=0;

//D:\FPGA_Proj\FPGAtest\codepz
initial
begin
fids1 = $fopen("D:\FPGA_Proj\FPGAtest\codepz\R.bmp","rb");
dat1 = $fread(Rbuff,fids1);
$fclose(fids1);
end

initial
begin
fids2 = $fopen("D:\FPGA_Proj\FPGAtest\codepz\G.bmp","rb");
dat2 = $fread(Gbuff,fids2);
$fclose(fids2);
end

initial
begin
fids3 = $fopen("D:\FPGA_Proj\FPGAtest\codepz\B.bmp","rb");
dat3 = $fread(Bbuff,fids3);
$fclose(fids3);
end

initial
begin
i_clk=1;
i_rst=1;

1200;

i_rst=0;
end

always #5 i_clk=~i_clk;

always@(posedge i_clk)
begin
i_Ir<=Rbuff[jj];
i_Ig<=Gbuff[jj];
i_Ib<=Bbuff[jj];
jj<=jj+1;
end

main_RGB2HSV main_RGB2HSV_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_image_R (i_Ir),
.i_image_G (i_Ig),
.i_image_B (i_Ib),
.o_H (o_H),// Y
.o_S (o_S),// Y
.o_V (o_V)
);

integer fout1;
initial begin
fout1 = $fopen("H.txt","w");
end

always @ (posedge i_clk)
begin
if(jj<=66616)
$fwrite(fout1,"%d\n",o_H);
else
$fwrite(fout1,"%d\n",0);
end

integer fout2;
initial begin
fout2 = $fopen("S.txt","w");
end

always @ (posedge i_clk)
begin
if(jj<=66616)
$fwrite(fout2,"%d\n",o_S);
else
$fwrite(fout2,"%d\n",0);
end

integer fout3;
initial begin
fout3 = $fopen("V.txt","w");
end

always @ (posedge i_clk)
begin
if(jj<=66616)
$fwrite(fout3,"%d\n",o_V);
else
$fwrite(fout3,"%d\n",0);
end

endmodule

```

相关文章
|
6天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
99 74
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
140 69
|
1月前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
70 26
|
5天前
|
存储 编解码 算法
基于FPGA的直接数字频率合成器verilog实现,包含testbench
本项目基于Vivado 2019.2实现DDS算法,提供完整无水印运行效果预览。DDS(直接数字频率合成器)通过数字信号处理技术生成特定频率和相位的正弦波,核心组件包括相位累加器、正弦查找表和DAC。相位累加器在每个时钟周期累加频率控制字,正弦查找表根据相位值输出幅度,DAC将数字信号转换为模拟电压。项目代码包含详细中文注释及操作视频。
|
2月前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
74 8
|
2月前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
74 11
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
56 1
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
65 4
|
3月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
3月前
|
存储 算法 数据处理
基于FPGA的8PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统在原有的8PSK调制解调基础上,新增了高斯信道与误码率统计模块,验证了不同SNR条件下的8PSK性能。VIVADO2019.2仿真结果显示,在SNR分别为30dB、15dB和10dB时,系统表现出不同的误码率和星座图分布。8PSK作为一种高效的相位调制技术,广泛应用于无线通信中。FPGA凭借其高度灵活性和并行处理能力,成为实现此类复杂算法的理想平台。系统RTL结构展示了各模块间的连接与协同工作。
73 16

热门文章

最新文章