算法01-算法概念与描述

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 算法01-算法概念与描述


总结

本系列为C++算法学习系列,会介绍 算法概念与描述,入门算法,基础算法,数值处理算法,排序算法,搜索算法,图论算法, 动态规划等相关内容。本文为C+算法概念与描述部分。

大纲要求

【 1 】算法概念

【 2 】算法描述:自然语言描述、流程图描述、 伪代码描述

算法概念

信息学奥赛算法是指用计算机解决问题的方法和技巧。其核心在于算法的设计和优化,包括时间复杂度和空间复杂度等方面的优化。下面是一些常见的算法概念介绍:

  1. 排序算法:将一组数据按照指定的规则进行排序的算法,包括冒泡排序、快速排序、归并排序等。
  2. 搜索算法:通过遍历某个数据集合来查找特定元素的算法,包括二分查找、深度优先搜索、广度优先搜索等。
  3. 图论算法:用于解决图论相关问题的算法,包括最短路径算法、最小生成树算法、拓扑排序等。
  4. 动态规划算法:将一个问题分解成一个个子问题来求解的算法,包括最大子序列和、最长公共子序列等。
  5. 贪心算法:在每一步选择中都采取在当前状态下最优的选择,从而希望导致结果是全局最优的算法,包括背包问题等。
  6. 分治算法:将问题分解成多个小问题来求解的算法,包括快速排序、归并排序等。
  7. 字符串算法:用于解决字符串相关问题的算法,包括KMP算法、Trie树等。

举个例子:量水问题

假设有两只没有刻度的桶A和B,A可以装7升水,B可以装5升水,问:如何通过A和B互相倒腾得到六升水。

解:

将A装满(0升变7升)

将A的水倒向B,(A从7升剩2升,B变5升)

将B倒掉,

将A(2升b变0)倒向B(0变2升)

将A装满水

将A倒向B(此时A从7升变4升,B从2升变5升)

将B倒掉,

将A(4升)倒向B(从0升变4升)

将A装满水

将A再倒向B(从4升变5升,A此时剩余6升。

简化步骤:

将下面(2,3,4,5)重复两次

2、将A装满

3、将A的水倒向B

4、将B倒掉

5、将A倒向B

6、将A装满水

7、将A再倒向B

算法简单来说就是准确描述的“操作步骤”。

什么是计算机算法 —— 从特殊到一般的追求。

上面的例子我们给定的是具体的值,但是计算机算法是要追求一般的规律。

我们可以理解为数学公式,它不是具体的值,但解释了一般规律。

算法描述

算法描述:自然语言描述、流程图描述、 伪代码描述

**自然语言描述:**通过自然语言来描述算法的步骤和操作。例如,冒泡排序算法可以用如下自然语言描述:从数组的第一个元素开始,依次比较相邻的两个元素,如果前一个元素大于后一个元素,则交换它们的位置,直到将最大的元素移动到数组的最后一个位置。重复上述操作,直到所有元素都排好序为止。

初始化变量 i 和 j 为 0,表示当前需要比较的元素下标。

在数组 A 中比较 A[i] 和 A[j] 两个元素,如果 A[i] 大于 A[j],则交换它们的位置。

将 j 增加 1,如果 j < n,则回到步骤 2;否则,将 i 增加 1,将 j 重置为 i,如果 i < n-1,则回到步骤 2。

当 i >= n-1 时,排序结束。

**流程图描述:**通过图形化方式来表示算法的步骤和操作。例如,下图是一个简单的冒泡排序算法的流程图描述:

**伪代码描述:**通过一种类似编程语言的语法来描述算法的步骤和操作。伪代码通常比自然语言描述更具体和精确。例如,下面是一个用伪代码描述的冒泡排序算法:

procedure bubbleSort(A : list of sortable items)
    n = length(A)
    repeat
        swapped = false
        for i = 1 to n-1 do
            if A[i] > A[i+1] then
                swap(A[i], A[i+1])
                swapped = true
            end if
        end for
        n = n - 1
    until not swapped
end procedure

假设有两只没有刻度的桶A和B,A可以装7升水,B可以装5升水,问:如何通过A和B互相倒腾得到六升水。

算法的时间复杂度

算法的时间复杂度是衡量算法运行时间效率的一种指标,通常用大O表示法来表达。它描述了算法在处理问题时所需的时间资源,即算法的时间复杂度越低,算法的执行效率越高。

时间复杂度通常表示为一个函数T(n),其中n表示输入规模。时间复杂度可以分为以下几类:

  1. 常数时间复杂度O(1),表示算法的执行时间与输入规模 n 无关,比如说访问数组中的一个元素。
int i = 1;
int j = 2;
++i;
j++;
int m = i + j;
  1. 线性时间复杂度O(n),表示算法的执行时间与输入规模 n 成正比,比如说遍历一个数组。
for(i=1; i<=n; ++i)
{
   j = i;
   j++;
}
  1. 对数时间复杂度O(logn),表示算法的执行时间与输入规模 n 的对数成正比,通常出现在二分查找等算法中。
int i = 1;
while(i<n)
{
    i = i * 2;
}
  1. 线性对数阶O(nlogN)

线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)。

for(m=1; m<n; m++)
{
    i = 1;
    while(i<n)
    {
        i = i * 2;
    }
}
  1. 平方时间复杂度O(n^2),表示算法的执行时间与输入规模 n 的平方成正比,通常出现在多重循环嵌套的算法中。
for(x=1; i<=n; x++)
{
   for(i=1; i<=n; i++)
    {
       j = i;
       j++;
    }
}
  1. 指数时间复杂度O(2^n),表示算法的执行时间与输入规模 n 的指数成正比,通常只出现在具有递归性质的算法中。

综上所述,算法的时间复杂度是评价算法效率的重要指标之一。在实际编程中,我们需要根据不同的需求选择不同的算法和数据结构,以提高程序的执行效率。算法的时间复杂度是衡量算法运行时间效率的一种指标,通常用大O表示法来表达。它描述了算法在处理问题时所需的时间资源,即算法的时间复杂度越低,算法的执行效率越高。

相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
79 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
存储 算法
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
这篇文章详细介绍了图的概念、表示方式以及深度优先遍历和广度优先遍历的算法实现。
56 1
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
|
6月前
|
存储 算法 Linux
【数据结构和算法】---二叉树(1)--树概念及结构
【数据结构和算法】---二叉树(1)--树概念及结构
51 0
|
6月前
|
资源调度 算法 计算机视觉
BRIEF描述子生成算法
BRIEF描述子生成算法
55 0
|
4月前
|
机器学习/深度学习 算法
【机器学习】解释对偶的概念及SVM中的对偶算法?(面试回答)
解释了对偶的概念,指出对偶性在优化问题中的重要性,尤其是在强对偶性成立时可以提供主问题的最优下界,并且详细阐述了支持向量机(SVM)中对偶算法的应用,包括如何将原始的最大间隔优化问题转换为对偶问题来求解。
89 2
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之深度学习算法概念
深度学习算法是一类基于人工神经网络的机器学习方法,其核心思想是通过多层次的非线性变换,从数据中学习表示层次特征,从而实现对复杂模式的建模和学习。深度学习算法在图像识别、语音识别、自然语言处理等领域取得了巨大的成功,成为人工智能领域的重要技术之一。
90 3
|
6月前
|
存储 算法 C语言
二分查找算法的概念、原理、效率以及使用C语言循环和数组的简单实现
二分查找算法的概念、原理、效率以及使用C语言循环和数组的简单实现
|
6月前
|
机器学习/深度学习 算法 C语言
详细介绍递归算法在 C 语言中的应用,包括递归的基本概念、特点、实现方法以及实际应用案例
【6月更文挑战第15天】递归算法在C语言中是强大力量的体现,通过函数调用自身解决复杂问题。递归涉及基本概念如自调用、终止条件及栈空间管理。在C中实现递归需定义递归函数,分解问题并设定停止条件。阶乘和斐波那契数列是经典应用示例,展示了递归的优雅与效率。然而,递归可能导致栈溢出,需注意优化。学习递归深化了对“分而治之”策略的理解。**
120 7
|
6月前
|
搜索推荐 算法
【排序】数据结构——排序算法概念及代码详解(插入、冒泡、快速、希尔)
【排序】数据结构——排序算法概念及代码详解(插入、冒泡、快速、希尔)
|
5月前
|
存储 算法 Java
Java面试题:解释JVM的内存结构,并描述堆、栈、方法区在内存结构中的角色和作用,Java中的多线程是如何实现的,Java垃圾回收机制的基本原理,并讨论常见的垃圾回收算法
Java面试题:解释JVM的内存结构,并描述堆、栈、方法区在内存结构中的角色和作用,Java中的多线程是如何实现的,Java垃圾回收机制的基本原理,并讨论常见的垃圾回收算法
68 0
下一篇
无影云桌面