基于Aidlux平台的智能版面分析

简介: 版面分析是将文档图像进行文档对象识别并判断各区域所属类别,如配图、表格、公式、分栏等,并对不同类型的区域进行切分、识别。后面的工作是实现包括组卷、以题搜题、文档电子化存储、结构化解析等功能。

版面分析是将文档图像进行文档对象识别并判断各区域所属类别,如配图、表格、公式、分栏等,并对不同类型的区域进行切分、识别。后面的工作是实现包括组卷、以题搜题、文档电子化存储、结构化解析等功能。
版面分析的背景介绍:
image.png
目标:
image.png
图像版面分析任务拆解:
image.png
PDF转Word:
image.png
本实战采用CDLA数据集(A Chinese document layout analysis (CDLA) dataset https://github.com/buptlihang/CDLA)进行YOLOv8训练,将训练结果生成的best.pth进行onnx转化:
首先,ONNX是一种通用的深度学习模型格式,支持广泛的深度学习框架,包括
PyTorch、TensorFlow、MXNet等。
因此,将PyTorch模型转换为ONNX格式可以方便地在其他框架上部署和运行。
其次,ONNX支持模型优化和压缩,可以将模型大小和计算性能进一步优化,以满足实际应用的需求。
在Aidlux平台上上传代码包后,分别进行相关配置后,进行PDF转图片->版面检测->文本检测和识别等流程,输出Word。
具体的代码如下:

from layout_engine import *
# cap = cvs.VideoCapture()

if __name__ == "__main__":

    print("----------------------------- 相关配置 --------------------------------")
    # 加载检测和识别模型
    OCR_model = OcrEngine()
    layout_model = predictor.load_layout_model()
    print("-->模型加载成功")

    # 输入的PDF路径
    pdf_path = "inputs/paper1.pdf"
    pdf_name = pdf_path.split("/")[-1].split(".pdf")[0]

    print("----------------------------- PDF转图片 --------------------------")
    # 获取当前请求时间
    ti = time.localtime()
    date = f"{ti[0]}_{ti[1]}_{ti[2]}"
    uid = uuid.uuid4().hex[:10]

    # 需要储存图片的目录
    imagePath = f"outputs/pdf/{ti[0]}_{ti[1]}_{ti[2]}_{ti[3]}_{ti[4]}_{ti[5]}_{uid}"
    os.makedirs(imagePath, exist_ok=True)
    pyMuPDF_fitz(pdf_path, imagePath)

    # 创建一个doc文档,用于后续填充内容
    doc = docx.Document()
    default_section = doc.sections[0]
    default_section.page_width = Cm(21)
    default_section.page_height = Cm(30)

    pdf_image_path_list = os.listdir(imagePath)
    # os.listdir的数字从小到大排序
    pdf_image_path_list.sort(key=lambda x: int(x[:-4]))
    img_num = 0
    for pdf_image in tqdm.tqdm(pdf_image_path_list):
        print("----------------------------- 版面检测--------------------------")
        pdf_image_path = os.path.join(imagePath, pdf_image)
        im_cv2 = cv2.imread(pdf_image_path)
        im_b64 = np2base64(im_cv2)
        layout_result,results = predictor.layout_predict(layout_model, im_b64)
        results = results[0].plot()

        # 填充图像、表格、页眉、页脚区域为白色,避免文本OCR的干扰
        im_cv2_plot = im_cv2.copy()
        for item in layout_result:
            points = item.values()
            for point in points:
                im_cv2_plot = cv2.rectangle(im_cv2_plot, (point[0], point[1]), (point[2], point[3]), (255, 255, 255),
                                            -1)

        print("----------------------------- 文本检测和识别--------------------------")
        img_draw, result_list = OCR_model.text_predict(im_cv2_plot, 960)  # 文本检测和识别
        # 将绘制后的图片从BGR格式转换为RGB格式
        img_draw_PIL = Image.fromarray(cv2.cvtColor(results, cv2.COLOR_BGR2RGB))
        ocr_result = []
        for result in result_list:
            ocr_dict = {}
            box, text = result[0].tolist(), result[1]
            box_xy = [box[0][0], box[0][1], box[2][0], box[2][1]]
            ocr_dict[text] = box_xy
            ocr_result.append(ocr_dict)
            img_draw_PIL = cv2ImgAddText(img_draw_PIL, text, box[0][0], box[0][1])
        img_draw_cv = cv2.cvtColor(np.asarray(img_draw_PIL), cv2.COLOR_RGB2BGR)
        # cvs.imshow(img_draw_cv)
        cv2.imwrite(f"outputs/plot/{img_num}.jpg",img_draw_cv)
        img_num = img_num + 1

        print("----------------------------- 写入Word--------------------------")
        # 图片和文本行按照y轴方向进行排序(单栏适用,多栏请先做好分栏操作)
        final_result = ocr_result + layout_result
        final_result_sort = sorted(final_result, key=lambda x: x[list(x.keys())[0]][1])

        for item in final_result_sort:
            keys_list = item.keys()
            for key in keys_list:
                # 对图片和表格进行处理:裁剪-->保存-->写入Word文档
                if key in ["Figure", "Table"]:
                    points = item[key]
                    crop_img = im_cv2[points[1]:points[3], points[0]:points[2]]
                    uid = uuid.uuid4().hex[:10]
                    name = f"{ti[0]}_{ti[1]}_{ti[2]}_{ti[3]}_{ti[4]}_{ti[5]}_{uid}"
                    crop_img_path = f"outputs/crop/{name}.jpg"
                    cv2.imwrite(crop_img_path, crop_img)
                    doc.add_picture(crop_img_path, width=Cm(11))

                # 对页眉和页脚不做写入操作,跳过
                elif key in ["Header", "Footer"]:
                    continue

                # 对其他情况(Text正文部分):保存并设置字体和大小
                else:
                    paragraph = doc.add_paragraph()
                    run = paragraph.add_run(key)
                    font = run.font
                    font.name = 'Times New Roman'
                    font.size = docx.shared.Pt(11)

    # 保存文档
    word_name = f"{pdf_name}_{ti[0]}_{ti[1]}_{ti[2]}_{ti[3]}_{ti[4]}_{ti[5]}_{uid}"
    word_path = f'outputs/words/{word_name}.docx'
    doc.save(word_path)
    print("Done!")

效果视频:
https://www.bilibili.com/video/BV13K4y1r7gs/

相关文章
|
6月前
|
人工智能 数据可视化 搜索推荐
Katalist官网体验入口 生成式AI视觉故事板工具
【2月更文挑战第26天】Katalist官网体验入口 生成式AI视觉故事板工具
182 4
Katalist官网体验入口 生成式AI视觉故事板工具
|
6月前
|
机器学习/深度学习 API 开发工具
视觉智能平台常见问题之实现卡通效果图如何解决
视觉智能平台是利用机器学习和图像处理技术,提供图像识别、视频分析等智能视觉服务的平台;本合集针对该平台在使用中遇到的常见问题进行了收集和解答,以帮助开发者和企业用户在整合和部署视觉智能解决方案时,能够更快地定位问题并找到有效的解决策略。
147 3
|
6月前
|
机器学习/深度学习 人工智能 文字识别
文档图像智能分析与处理:CCIG技术论坛的思考与展望
文档图像智能分析与处理:CCIG技术论坛的思考与展望
136 1
文档图像智能分析与处理:CCIG技术论坛的思考与展望
|
6月前
|
机器学习/深度学习 人工智能 Linux
基于AidLux的智慧教育版面分析应用
基于AidLux的智慧教育版面分析应用
|
13天前
|
自然语言处理 数据可视化 前端开发
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
合合信息的智能文档处理“百宝箱”涵盖文档解析、向量化模型、测评工具等,解决了复杂文档解析、大模型问答幻觉、文档解析效果评估、知识库搭建、多语言文档翻译等问题。通过可视化解析工具 TextIn ParseX、向量化模型 acge-embedding 和文档解析测评工具 markdown_tester,百宝箱提升了文档处理的效率和精确度,适用于多种文档格式和语言环境,助力企业实现高效的信息管理和业务支持。
3933 2
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
|
5月前
|
文字识别 算法 数据挖掘
视觉智能开放平台产品使用合集之对于统计研究和数据分析,有哪些比较好的工具推荐
视觉智能开放平台是指提供一系列基于视觉识别技术的API和服务的平台,这些服务通常包括图像识别、人脸识别、物体检测、文字识别、场景理解等。企业或开发者可以通过调用这些API,快速将视觉智能功能集成到自己的应用或服务中,而无需从零开始研发相关算法和技术。以下是一些常见的视觉智能开放平台产品及其应用场景的概览。
|
5月前
|
文字识别 算法 API
视觉智能开放平台产品使用合集之文生图下架后,有什么替代的办法
视觉智能开放平台是指提供一系列基于视觉识别技术的API和服务的平台,这些服务通常包括图像识别、人脸识别、物体检测、文字识别、场景理解等。企业或开发者可以通过调用这些API,快速将视觉智能功能集成到自己的应用或服务中,而无需从零开始研发相关算法和技术。以下是一些常见的视觉智能开放平台产品及其应用场景的概览。
|
5月前
|
机器学习/深度学习 人工智能 文字识别
【AI落地应用实战】如何让扫描工具更会思考——智能高清滤镜2.0实战测评
扫描全能王的智能高清滤镜2.0利用深度学习技术解决文档图像处理难题,如透字、阴影、褶皱、手指遮挡等问题。它采用自适应感知技术,识别并处理不同元素,同时结合多尺度感知融合方法,提升图像清晰度。实测显示,滤镜在曲面书籍、摩尔纹屏幕、透字文档和光线不均的图画等场景下表现优秀,能智能地适应和优化复杂条件下的扫描效果,提高了文档扫描的效率和质量。
|
6月前
|
人工智能 编解码 数据安全/隐私保护
才发现百度自带的AI图片助手这么好用,去水印、画质优化、AI扩图、涂抹消除等功能一应俱全!
才发现百度自带的AI图片助手这么好用,去水印、画质优化、AI扩图、涂抹消除等功能一应俱全!
907 0
|
6月前
|
机器学习/深度学习 Java PHP
视觉智能平台常见问题之生成任务的眼镜无神如何解决
视觉智能平台是利用机器学习和图像处理技术,提供图像识别、视频分析等智能视觉服务的平台;本合集针对该平台在使用中遇到的常见问题进行了收集和解答,以帮助开发者和企业用户在整合和部署视觉智能解决方案时,能够更快地定位问题并找到有效的解决策略。