Docker【部署 07】镜像内安装tensorflow-gpu及调用GPU多个问题处理Could not find cuda drivers+unable to find libcuda.so...

简介: Docker【部署 07】镜像内安装tensorflow-gpu及调用GPU多个问题处理Could not find cuda drivers+unable to find libcuda.so...

1.安装tensorflow-gpu

Building wheels for collected packages: tensorflow-gpu
  Building wheel for tensorflow-gpu (setup.py): started
  Building wheel for tensorflow-gpu (setup.py): finished with status 'error'
  Running setup.py clean for tensorflow-gpu
  error: subprocess-exited-with-error
  × python setup.py bdist_wheel did not run successfully.
  │ exit code: 1
  ╰─> [18 lines of output]
      Traceback (most recent call last):
        File "<string>", line 2, in <module>
        File "<pip-setuptools-caller>", line 34, in <module>
        File "/tmp/pip-install-i6frcfa8/tensorflow-gpu_2cea358528754cc596c541f9c2ce45ca/setup.py", line 37, in <module>
          raise Exception(TF_REMOVAL_WARNING)
      Exception:
      =========================================================
      The "tensorflow-gpu" package has been removed!
      Please install "tensorflow" instead.
      Other than the name, the two packages have been identical
      since TensorFlow 2.1, or roughly since Sep 2019. For more
      information, see: pypi.org/project/tensorflow-gpu
      =========================================================
      [end of output]
  note: This error originates from a subprocess, and is likely not a problem with pip.
  ERROR: Failed building wheel for tensorflow-gpu
Failed to build tensorflow-gpu

Other than the name, the two packages have been identical since TensorFlow 2.1 也就是说安装2.1版本的已经自带GPU支持。

2.Docker使用GPU

不同型号的GPU及驱动版本有所区别,环境驱动及CUDA版本如下:

[root@localhost ~]# nvidia-smi
# 查询结果
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.27.04    Driver Version: 460.27.04    CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+

2.1 Could not find cuda drivers

# 报错
I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.

在Docker容器中的程序无法识别CUDA环境变量,可以尝试以下步骤来解决这个问题:

  1. 检查CUDA版本:首先,需要确认宿主机上已经正确安装了CUDA。在宿主机上运行nvcc --version命令来检查CUDA版本。
  2. 使用NVIDIA Docker镜像:NVIDIA提供了一些预先配置好的Docker镜像,这些镜像已经包含了CUDA和其他必要的库。可以使用这些镜像作为Dockerfile的基础镜像。
  3. 设置环境变量:在Dockerfile中,可以使用ENV指令来设置环境变量。例如,如果CUDA安装在/usr/local/cuda目录下,可以添加以下行到Dockerfile中:ENV PATH /usr/local/cuda/bin:$PATH
  4. 使用nvidia-docker:nvidia-docker是一个用于运行GPU加速的Docker容器的工具。

检测CUDA版本是必要的,由于使用的是导出的镜像文件,2和3的方法无法使用,最终使用-e进行环境变量设置:

# 添加cuda的环境变量
-e PATH=/usr/local/cuda-11.2/bin:$PATH -e LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:$LD_LIBRARY_PATH
# 启动命令
nvidia-docker run --name deepface --privileged=true --restart=always --net="host" -e PATH=/usr/local/cuda-11.2/bin:$PATH -e LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:$LD_LIBRARY_PATH -v /root/.deepface/weights/:/root/.deepface/weights/ -v /usr/local/cuda-11.2/:/usr/local/cuda-11.2/ -d deepface_image

2.2 was unable to find libcuda.so DSO

I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:168] retrieving CUDA diagnostic information for host: localhost.localdomain
I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:175] hostname: localhost.localdomain
I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:199] libcuda reported version is: NOT_FOUND: was unable to find libcuda.so DSO loaded into this program
I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:203] kernel reported version is: 460.27.4

在Linux环境下,Docker可以支持将宿主机上的目录挂载到容器里。这意味着,如果宿主机上的目录包含软链接,那么这些软链接也会被挂载到容器中。然而,需要注意的是,这些软链接指向的路径必须在Docker容器中是可访问的。也就是说,如果软链接指向的路径没有被挂载到Docker容器中,那么在容器中访问这个软链接可能会失败。

原文链接:https://blog.csdn.net/u013546508/article/details/88637434,当前环境下问题解决步骤:

# 1.查找 libcuda.so 文件位置
find / -name libcuda.so*
# 查找结果
/usr/lib/libcuda.so
/usr/lib/libcuda.so.1
/usr/lib/libcuda.so.460.27.04
/usr/lib64/libcuda.so
/usr/lib64/libcuda.so.1
/usr/lib64/libcuda.so.460.27.04
# 2.查看LD_LIBRARY_PATH
echo $LD_LIBRARY_PATH
# 查询结果
/usr/local/cuda/lib64
# 3.将64位的libcuda.so.460.27.04复制到LD_LIBRARY_PATH路径下【libcuda.so和libcuda.so.1都是软连接】
cp /usr/lib64/libcuda.so.460.27.04 /usr/local/cuda-11.2/lib64/
# 4.创建软连接
ln -s libcuda.so.460.27.04 libcuda.so.1
ln -s libcuda.so.1 libcuda.so

2.3 Could not find TensorRT&&Cannot dlopen some GPU libraries

I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
W tensorflow/core/common_runtime/gpu/gpu_device.cc:1960] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...

这个问题实际上是Docker镜像文件未安装TensorRT导致的,可以在Dockerfile里添加安装命令后重新构建镜像:

RUN pip install tensorrt -i https://pypi.tuna.tsinghua.edu.cn/simple

以下操作不推荐,进入容器进行安装:

# 1.查询容器ID
docker ps
# 2.在running状态进入容器
docker exec -it ContainerID /bin/bash
# 3.安装软件
pip install tensorrt -i https://pypi.tuna.tsinghua.edu.cn/simple
# 4.提交新的镜像【可以将新的镜像导出使用】
docker commit ContainerID imageName:version

安装后的现象:

root@localhost:/app# python
Python 3.8.18 (default, Sep 20 2023, 11:41:31)
[GCC 12.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
# 使用tensorflow报错
>>> import tensorflow as tf
2023-10-09 10:15:55.482545: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-10-09 10:15:56.498608: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
# 先导入tensorrt后使用tensorflow看我用
>>> import tensorrt as tr
>>> import tensorflow as tf
>>> tf.test.is_gpu_available()
WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2023-10-09 10:16:41.452672: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device /device:GPU:0 with 11389 MB memory:  -> device: 0, name: Tesla T4, pci bus id: 0000:2f:00.0, compute capability: 7.5
True

尝试解决,在容器启动要执行的py文件内加入以下代码,我将以下代码加入到app.py文件内:

import tensorrt as tr
import tensorflow as tf
if __name__ == "__main__":
    available = tf.config.list_physical_devices('GPU')
    print(f"available:{available}")

加入代码后的文件为:

# 3rd parth dependencies
import tensorrt as tr
import tensorflow as tf
from flask import Flask
from routes import blueprint
def create_app():
    available = tf.config.list_physical_devices('GPU')
    print(f"available:{available}")
    app = Flask(__name__)
    app.register_blueprint(blueprint)
    return app

启动容器:

nvidia-docker run --name deepface --privileged=true --restart=always --net="host" -e PATH=/usr/local/cuda-11.2/bin:$PATH -e LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:$LD_LIBRARY_PATH -v /root/.deepface/weights/:/root/.deepface/weights/ -v /usr/local/cuda-11.2/:/usr/local/cuda-11.2/ -v /opt/xinan-facesearch-service-public/deepface/api/app.py:/app/app.py -d deepface_image

2.4 Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED

E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:437] Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED
E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:441] Memory usage: 1100742656 bytes free, 15843721216 bytes total.
E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:451] Possibly insufficient driver version: 460.27.4
W tensorflow/core/framework/op_kernel.cc:1828] OP_REQUIRES failed at conv_ops_impl.h:770 : UNIMPLEMENTED: DNN library is not found.

未安装cuDNN导致的问题,安装即可。

2.5 CuDNN library needs to have matching major version and equal or higher minor version

安装版本跟编译项目的版本不匹配,调整版本后成功使用GPU。

E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:425] Loaded runtime CuDNN library: 8.1.1 but source was compiled with: 8.6.0.  CuDNN library needs to have matching major version and equal or higher minor version. If using a binary install, upgrade your CuDNN library.  If building from sources, make sure the library loaded at runtime is compatible with the version specified during compile configuration.
相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
2月前
|
应用服务中间件 网络安全 nginx
手把手教你使用 Docker 部署 Nginx 教程
本文详解Nginx核心功能与Docker部署优势,涵盖镜像拉取、容器化部署(快速、挂载、Compose)、HTTPS配置及常见问题处理,助力高效搭建稳定Web服务。
1101 4
|
2月前
|
应用服务中间件 Linux nginx
在虚拟机Docker环境下部署Nginx的步骤。
以上就是在Docker环境下部署Nginx的步骤。需要注意,Docker和Nginix都有很多高级用法和细节需要掌握,以上只是一个基础入门级别的教程。如果你想要更深入地学习和使用它们,请参考官方文档或者其他专业书籍。
154 5
|
3月前
|
存储 Docker Python
docker 部署 sftp
本文介绍SFTP服务的部署与配置,包括users.conf用户配置规则、Docker容器运行命令及上传目录权限说明,重点解析atmoz/sftp镜像的chroot机制与子目录映射,确保用户登录后正确访问/upload目录,并提供Python脚本实现文件上传示例。
278 12
docker 部署 sftp
|
2月前
|
存储 NoSQL Redis
手把手教你用 Docker 部署 Redis
Redis是高性能内存数据库,支持多种数据结构,适用于缓存、消息队列等场景。本文介绍如何通过Docker快速拉取轩辕镜像并部署Redis,涵盖快速启动、持久化存储及docker-compose配置,助力开发者高效搭建稳定服务。
811 7
|
2月前
|
NoSQL 算法 Redis
【Docker】(3)学习Docker中 镜像与容器数据卷、映射关系!手把手带你安装 MySql主从同步 和 Redis三主三从集群!并且进行主从切换与扩容操作,还有分析 哈希分区 等知识点!
Union文件系统(UnionFS)是一种**分层、轻量级并且高性能的文件系统**,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem) Union 文件系统是 Docker 镜像的基础。 镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。
498 5
|
2月前
|
存储 搜索推荐 数据库
🚀 RAGFlow Docker 部署全流程教程
RAGFlow是开源的下一代RAG系统,融合向量数据库与大模型,支持全文检索、插件化引擎切换,适用于企业知识库、智能客服等场景。支持Docker一键部署,提供轻量与完整版本,助力高效搭建私有化AI问答平台。
2012 8
|
2月前
|
存储 关系型数据库 MySQL
MySQL Docker 容器化部署全指南
MySQL是一款开源关系型数据库,广泛用于Web及企业应用。Docker容器化部署可解决环境不一致、依赖冲突问题,实现高效、隔离、轻量的MySQL服务运行,支持数据持久化与快速迁移,适用于开发、测试及生产环境。
526 4
|
2月前
|
人工智能 并行计算 PyTorch
以Lama Cleaner的AI去水印工具理解人工智能中经常会用到GPU来计算的CUDA是什么? 优雅草-卓伊凡
以Lama Cleaner的AI去水印工具理解人工智能中经常会用到GPU来计算的CUDA是什么? 优雅草-卓伊凡
274 4
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
1021 55

热门文章

最新文章