大数据面试题百日更新_Hadoop专题(Day09)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据面试题百日更新_Hadoop专题(Day09)

10. 请说下 MR 中 Map Task 的工作机制

简单概述:

inputFile 通过 split 被切割为多个 split 文件,通过 Record 按行读取内容给map(自己写的处理逻辑的方法)

,数据被 map 处理完之后交给 OutputCollect 收集器,对其结果 key 进行分区(默认使用的 hashPartitioner),然后写入 buffer,每个 map task 都有一个内存缓冲区(环形缓冲区),存放着 map 的输出结果,当缓冲区快满的时候需要将缓冲区的数据以一个临时文件的方式溢写到磁盘,当整个 map task 结束后再对磁盘中这个 maptask 产生的所有临时文件做合并,生成最终的正式输出文件,然后等待 reduce task 的拉取

详细步骤:

1)读取数据组件 InputFormat (默认 TextInputFormat) 会通过 getSplits 方法对输入目录中的文件进行逻辑切片规划得到 block, 有多少个 block 就对应启动多少个 MapTask.

2)将输入文件切分为 block 之后, 由 RecordReader 对象 (默认是LineRecordReader) 进行读取, 以 \n 作为分隔符, 读取一行数据, 返回 <key, value>. Key 表示每行首字符偏移值, Value 表示这一行文本内容

3)读取 block 返回 <key,value>, 进入用户自己继承的 Mapper 类中,执行用户重写的 map 函数, RecordReader 读取一行这里调用一次

4)Mapper 逻辑结束之后, 将 Mapper 的每条结果通过 context.write 进行collect 数据收集. 在 collect 中, 会先对其进行分区处理,默认使用HashPartitioner

5)接下来, 会将数据写入内存, 内存中这片区域叫做环形缓冲区(默认 100M), 缓冲区的作用是 批量收集 Mapper 结果, 减少磁盘 IO 的影响. 我们的Key/Value 对以及 Partition 的结果都会被写入缓冲区. 当然, 写入之前,Key 与 Value 值都会被序列化成字节数组

6)当环形缓冲区的数据达到溢写比列(默认 0.8),也就是 80M 时,溢写线程启动,

需要对这 80MB 空间内的 Key 做排序 (Sort). 排序是 MapReduce 模型默认的行为, 这里的排序也是对序列化的字节做的排序

7)合并溢写文件, 每次溢写会在磁盘上生成一个临时文件 (写之前判断是否有Combiner), 如果 Mapper 的输出结果真的很大, 有多次这样的溢写发生, 磁盘上相应的就会有多个临时文件存在. 当整个数据处理结束之后开始对磁盘中的临时文件进行 Merge 合并, 因为最终的文件只有一个, 写入磁盘, 并且为这个文件提供了一个索引文件, 以记录每个 reduce 对应数据的偏移量

11. 请说下 MR 中 Reduce Task 的工作机制

简单概述:

Reduce 大致分为 copy、sort、reduce 三个阶段,重点在前两个阶段。copy 阶段包含一个 eventFetcher 来获取已完成的 map 列表,由 Fetcher 线程去 copy 数据,在此过程中会启动两个 merge 线程,分别为 inMemoryMerger 和onDiskMerger,分别将内存中的数据 merge 到磁盘和将磁盘中的数据进行merge。待数据 copy 完成之后,copy 阶段就完成了,开始进行 sort 阶段,sort 阶段主要是执行 finalMerge 操作,纯粹的 sort 阶段,完成之后就是 reduce 阶段,调用用户定义的 reduce 函数进行处理

详细步骤:

1)Copy 阶段:简单地拉取数据。Reduce 进程启动一些数据 copy 线程(Fetcher), 通过 HTTP 方式请求 maptask 获取属于自己的文件(map task 的分区会标识每个map task 属于哪个 reduce task ,默认 reduce task 的标识从 0 开始)。

2)Merge 阶段:这里的 merge 如 map 端的 merge 动作,只是数组中存放的是不同 map 端 copy 来的数值。Copy 过来的数据会先放入内存缓冲区中,这里的缓冲区大小要比 map 端的更为灵活。merge 有三种形式:内存到内存;内存到磁盘; 磁盘到磁盘。默认情况下第一种形式不启用。当内存中的数据量到达一定阈值, 就启动内存到磁盘的 merge。与 map 端类似,这也是溢写的过程,这个过程中如果你设置有 Combiner,也是会启用的,然后在磁盘中生成了众多的溢写文件。第二种 merge 方式一直在运行,直到没有 map 端的数据时才结束,然后启动第三种磁盘到磁盘的 merge 方式生成最终的文件。

3)合并排序:把分散的数据合并成一个大的数据后,还会再对合并后的数据排序。

4)对排序后的键值对调用 reduce 方法,键相等的键值对调用一次 reduce 方法, 每次调用会产生零个或者多个键值对,最后把这些输出的键值对写入到 HDFS 文件中。

另一版本:

9.内存角度介绍Map的输出到Reduce的输入的过程。

Map的输出到内存
Map将数据传入环形缓冲区,默认100MB 可修改,环形缓冲区中的数据到达一定的阈值时,默认0.8 可修改,进行溢写生成好多临时文件,多个临时文件到达10个(可以调整)merge合并成一个大文件。
Reduce数据读取
reduce会主动去发起拷贝线程到maptask获取属于自己的数据,数据会进入ReduceTask中的环形缓冲区,当缓冲区中的数据量到达
一定阈值进行溢写,多个临时文件merge合并成一个大文件,最后输入到Reduce。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
13天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
53 2
|
14天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
53 1
|
1月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
53 1
|
1月前
|
SQL 分布式计算 大数据
大数据平台的毕业设计01:Hadoop与离线分析
大数据平台的毕业设计01:Hadoop与离线分析
|
3月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
6天前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
7天前
|
存储 缓存 Java
大厂面试必看!Java基本数据类型和包装类的那些坑
本文介绍了Java中的基本数据类型和包装类,包括整数类型、浮点数类型、字符类型和布尔类型。详细讲解了每种类型的特性和应用场景,并探讨了包装类的引入原因、装箱与拆箱机制以及缓存机制。最后总结了面试中常见的相关考点,帮助读者更好地理解和应对面试中的问题。
26 4
|
1月前
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
66 2
|
1月前
|
JSON 安全 前端开发
第二次面试总结 - 宏汉科技 - Java后端开发
本文是作者对宏汉科技Java后端开发岗位的第二次面试总结,面试结果不理想,主要原因是Java基础知识掌握不牢固,文章详细列出了面试中被问到的技术问题及答案,包括字符串相关函数、抽象类与接口的区别、Java创建线程池的方式、回调函数、函数式接口、反射以及Java中的集合等。
27 0
|
3月前
|
XML 存储 JSON
【IO面试题 六】、 除了Java自带的序列化之外,你还了解哪些序列化工具?
除了Java自带的序列化,常见的序列化工具还包括JSON(如jackson、gson、fastjson)、Protobuf、Thrift和Avro,各具特点,适用于不同的应用场景和性能需求。

热门文章

最新文章