【Python机器学习】神经网络中误差反向传播(BP)算法详解及代码示例(图文解释 附源码)

简介: 【Python机器学习】神经网络中误差反向传播(BP)算法详解及代码示例(图文解释 附源码)

需要全部代码请点赞关注收藏后评论留言私信~~~

误差反向传播学习算法

用神经网络来完成机器学习任务,先要设计好网络结构S,然后用训练样本去学习网络中的连接系数和阈值系数,即网络参数S,最后才能用来对测试样本进行预测。

在研究早期,没有适合多层神经网络的有效的参数学习方法是长期困扰该领域研究者的关键问题,以致于人们对人工神经网络的前途产生了怀疑,导致该领域的研究进入了低谷期。直到1986年,以Rumelhart和McCelland为首的小组发表了误差反向传播(Error Back Propagation,BP)算法,该问题才得以解决,多层神经网络从此得到快速发展。

采用BP算法来学习的、无反馈的、同层节点无连接的、多层结构的前馈神经网络称为BP神经网络。

逻辑代数中的异或运算时非线性的,它不能由单个神经元来模拟,下面用模拟异或运算的神经网络为例来说明BP学习过程

样本:

网络结构:      

要学习的参数:

BP学习算法可分为前向传播预测与反向传播学习两个过程。

为了方便求导,隐层和输出层的激励函数采用Sigmoid函数:

Sigmoid函数的导数为:

前向传播预测过程

设网络各参数初值为:

取第一个训练样本(0,0),第1隐层的输出:

用l^(1)和l^(2)表示标签值,采用各标签值的均方误差MSE作为总误差,并将总误差依次展开至输入层:

可见,总误差E是各层参数变量的函数,因此学习的目的就是通过调整各参数变量的值,使E最小。可采用梯度下降法求解。

第一个训练样本的标签值为(0,1),因此,输出产生的误差分别为0.743和−0.236。总误差:E=1/2∑_i=1^2▒(z^(i)−l^(i))^2=0.304 输出层节点的参数更新,以节点1的w_2^(1,1)和θ_2^(1)为例详细讨论。

先求偏导∂E/∂w_2^(1,1):∂E/∂w_2^(1,1)=∂E/∂y_2^(1)∙∂y_2^(1)/∂w_2^(1,1)=∂[1/2∑_i=1^2▒(y_2^(i)−l^(i))^2]/∂y_2^(1)∙∂y_2^(1)/∂w_2^(1,1)=(y_2^(1)−l^(1))∙∂y_2^(1)/∂w_2^(1,1)

式中括号(y_2^(1)−l^(1))是输出层节点1的校对误差,记为E_2^1,即E_2^1=y_2^(1)−l^(1)=0.743。因此∂E/∂w_2^(1,1)可视为该节点的校对误差乘以该节点输出对待更新参数变量的偏导:∂E/∂w_2^(1,1)=E_2^1∙∂y_2^(1)/∂w_2^(1,1)

后面求导过程过于繁杂 此处省略不表

以上给出了输入第一个训练样本后,网络的前向预测和反向学习过程。可将样本依次输入网络进行训练。一般要进行多轮训练。

运行输出结果如下

经过2000轮训练,每轮平均值总误差由0.32降维0.008

最后一轮的四个输出与相应标签值对比为下 预测输出十分接近实际标签值

部分代码如下

for j in range(2000):
    print("\n\n轮:", j)
    E = 0.0
    for i in range(4):
        print("样本:", i)
        print("实例:", XX[i])
        print("标签", L[i])
        ### 前向传播预测
        # 计算第1隐层的输出
        Y1[0] = y_1_1(W1, theta1, XX[i])
        Y1[1] = y_1_2(W1, theta1, XX[i])
        #print("第1隐层的输出:", Y1)
        # 计算第2隐层的输出
        Y2[0] = y_2_1(W2, theta2, Y1)
        Y2[1] = y_2_2(W2, theta2, Y1)
        print("第2隐层的输出:", Y2)
        ### 后向传播误差
        # 计算第2隐层的校对误差
        E2[0] = Y2[0] - L[i][0]
        E2[1] = Y2[1] - L[i][1]
        E += 0.5*(E2[0]*E2[0]+E2[1]*E2[1])
        #print("总误差", E)
        #print("第2隐层的校对误差", E2)
        # 计算第1隐层的校对误差
        E1[0] = E2[0]*Y2[0]*(1 - Y2[0])*W2[0,0] + E2[1]*Y2[1]*(1 - Y2[1])*W2[0,1]
        E1[1] = E2[0]*Y2[0]*(1 - Y2[0])*W2[1,0] + E2[1]*Y2[1]*(1 - Y2[1])*W2[1,1]
        #print("第1隐层的校对误差", E1)
        ### 更新系数
        # 更新第2隐层的系数
        W2[0,0] = W2[0,0] - a*E2[0]*Y2[0]*(1 - Y2[0])*Y1[0]
        W2[1,0] = W2[1,0] - a*E2[0]*Y2[0]*(1 - Y2[0])*Y1[1]
        theta2[0] = theta2[0] - a*E2[0]*Y2[0]*(1 - Y2[0])
        W2[0,1] = W2[0,1] - a*E2[1]*Y2[1]*(1 - Y2[1])*Y1[0]
        W2[1,1] = W2[1,1] - a*E2[1]*Y2[1]*(1 - Y2[1])*Y1[1]
        theta2[1] = theta2[1] - a*E2[1]*Y2[1]*(1 - Y2[1])
        #print("第2隐层的连接系数", W2)
        #print("第2隐层的阈值系数", theta2)
        # 更新第1隐层的系数
        W1[0,0] = W1[0,0] - a*E1[0]*Y1[0]*(1 - Y1[0])*XX[i][0]
        W1[1,0] = W1[1,0] - a*E1[0]*Y1[0]*(1 - Y1[0])*XX[i][1]
        theta1[0] = theta1[0] - a*E1[0]*Y1[0]*(1 - Y1[0])
        W1[0,1] = W1[0,1] - a*E1[1]*Y1[1]*(1 - Y1[1])*XX[i][0]
        W1[1,1] = W1[1,1] - a*E1[1]*Y1[1]*(1 - Y1[1])*XX[i][1]
        theta1[1] = theta1[1] - a*E1[1]*Y1[1]*(1 - Y1[1])
        #print("第1隐层的连接系数", W1)
        #print("第1隐层的阈值系数", theta1)
    print("平均总误差" + str(E/4.0))

下面用深度学习框架Tensorflow来模拟异或运算

训练过程如下

当采用(2,2,2)全连接层神经网络时,训练2000轮时,误差约为0.19,四个标签对应的输出为:

[0.43767142,0.56202793]→[0.,1.],

[0.5493321,0.45261452]→[1.,0.],

[0.575727,0.42299467]→[1.,0.],

[0.43716326,0.5625658 ]→[ 0.,1.]。

如果增加隐层的数量,将有效提高模拟效果,将隐层节点数量增加到4个,误差降到约0.16。

部分代码如下

import tensorflow as tf
import numpy as np
# 样本实例
XX = np.array([[0.0,0.0],
              [0.0,1.0],
              [1.0,0.0],
              [1.0,1.0]])
# 样本标签
L = np.array([[0.0,1.0],
              [1.0,0.0],
              [1.0,0.0],
              [0.0,1.0]])
tf_model = tf.keras.Sequential([
    tf.keras.layers.Dense(2, activation='sigmoid', input_shape=(2,), kernel_initializer='random_uniform', bias_initializer='zeros'),
    tf.keras.layers.Dense(2, activation='sigmoid', kernel_initializer='random_uniform', bias_initializer='zeros')
])
tf_model.compile(optimiaer=tf.keras.optimizers.SGD(), loss=tf.keras.losses.mean_squared_error, metrics=['accuracy'])
tf_model.summary()
tf_model.fit(XX, L, batch_size=4, epochs=2000, verbose=1)
tf_model.evaluate(XX, L)

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
26天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
84 4
|
24天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
5天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
22 2
|
23天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
39 1
|
1月前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
1月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
89 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
103 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
1月前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
37 0
|
1月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
36 0