【大数据技术Hadoop+Spark】Hive数据仓库架构、优缺点、数据模型介绍(图文解释 超详细)

简介: 【大数据技术Hadoop+Spark】Hive数据仓库架构、优缺点、数据模型介绍(图文解释 超详细)

一、Hive简介

Hive起源于Facebook,Facebook公司有着大量的日志数据,而Hadoop是实现了MapReduce模式开源的分布式并行计算的框架,可轻松处理大规模数据。然而MapReduce程序对熟悉Java语言的工程师来说容易开发,但对于其他语言使用者则难度较大。因此Facebook开发团队想设计一种使用SQL语言对日志数据查询分析的工具,而Hive就诞生于此,只要懂SQL语言,就能够胜任大数据分析方面的工作,还节省了开发人员的学习成本。

Hive是建立在Hadoop文件系统上的数据仓库,它提供了一系列工具,能够对存储在HDFS中的数据进行数据提取、转换和加载(ETL),这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的工具。Hive定义简单的类SQL查询语言(即HQL),可以将结构化的数据文件映射为一张数据表,允许熟悉SQL的用户查询数据,允许熟悉MapReduce的开发者开发mapper和reducer来处理复杂的分析工作,与MapReduce相比较,Hive更具有优势。      

Hive采用了SQL的查询语言HQL,因此很容易将Hive理解为数据库。其实从结构上来看,Hive和数据库除了拥有类似的查询语言,再无类似之处,MySQL与Hive对比如下所示。

对比项

Hive

MySQL

查询语言

Hive QL

SQL

数据存储位置

HDFS

块设备、本地文件系统

数据格式

用户定义

系统决定

数据更新

不支持

支持

事务

不支持

支持

执行延迟

可扩展性

数据规模

二、Hive架构

包括以下几个部分

1:用户结构:主要包括CLI、JDBC/ODBC客户端和Web接口,其中CLI为Shell命令行,JDBC/ODBC是Hive的Java接口实现,与传统数据库JDBC类似,Web接口通过浏览器访问Hive

2:元数据库:Hive将元数据存储在数据库中(MYSQL或者Derby)Hive中的元数据包括表的名字,表的列和分区及其属性,表的数据所在目录等等

3:Thrift服务器:允许客户端使用包括Java或其他很多种语言,通过编程的方式远程Hive

4:解释器,编译器,优化器,执行器:完成HQL查询语言语句从词法分析,语法分析,编译,优化以及查询计划的生成,生成的查询计划存储在HDFS中,并在随后调用执行MapReduce

三、Hive的优缺点

1:Hive的优点

适合大数据的批量处理,解决了传统关系数据库在大数据处理上的瓶颈

Hive构建在Hadoop之上,充分利用了集群的存储资源,计算资源,最终实现并行计算

Hive学习使用成本低,Hive支持标准的SQL语法,免去了编写MapReduce的过程,减少了开发成本

具有良好的扩展性,且能够实现和其他组件的结合使用

2:Hive的缺点

HQL表达能力依然有限,由于本身SQL的不足,不支持迭代计算,有些复杂的运算用HQL不易表达,还需要单独编写MapReduce来实现

Hive的运行效率低,延迟高,Hive是转换成MapReduce任务来进行数据分析,MapReduce是离线计算,所以Hive的运行效率也很低,而且是高延迟

Hive调优比较困难,由于Hive是构建在Hadoop之上的,Hive的调优还要考虑MapReduce层面,因此Hive的整体调优比较困难

四、Hive数据模型

Hive中所有的数据都存储在HDFS中,它包含数据库(Database)、表(Table)、分区表(Partition)和桶表(Bucket)四种数据类型。

Hive的内置数据类型可以分为两大类,分别是基础数据类型和复杂数据类型,Hive基础数据类型如下所示。

Hive复杂数据类型,具体如下所示。

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
7月前
|
存储 BI Shell
Doris基础-架构、数据模型、数据划分
Apache Doris 是一款高性能、实时分析型数据库,基于MPP架构,支持高并发查询与复杂分析。其前身是百度的Palo项目,现为Apache顶级项目。Doris适用于报表分析、数据仓库构建、日志检索等场景,具备存算一体与存算分离两种架构,灵活适应不同业务需求。它提供主键、明细和聚合三种数据模型,便于高效处理更新、存储与统计汇总操作,广泛应用于大数据分析领域。
738 2
|
7月前
|
SQL 缓存 前端开发
如何开发进销存系统中的基础数据板块?(附架构图+流程图+代码参考)
进销存系统是企业管理采购、销售与库存的核心工具,能有效提升运营效率。其中,“基础数据板块”作为系统基石,决定了后续业务的准确性与扩展性。本文详解产品与仓库模块的设计实现,涵盖功能概述、表结构设计、前后端代码示例及数据流架构,助力企业构建高效稳定的数字化管理体系。
|
6月前
|
数据采集 缓存 前端开发
如何开发门店业绩上报管理系统中的商品数据板块?(附架构图+流程图+代码参考)
本文深入讲解门店业绩上报系统中商品数据板块的设计与实现,涵盖商品类别、信息、档案等内容,详细阐述技术架构、业务流程、数据库设计及开发技巧,并提供完整代码示例,助力企业构建稳定、可扩展的商品数据系统。
|
5月前
|
数据采集 机器学习/深度学习 搜索推荐
MIT新论文:数据即上限,扩散模型的关键能力来自图像统计规律,而非复杂架构
MIT与丰田研究院研究发现,扩散模型的“局部性”并非源于网络架构的精巧设计,而是自然图像统计规律的产物。通过线性模型仅学习像素相关性,即可复现U-Net般的局部敏感模式,揭示数据本身蕴含生成“魔法”。
245 3
MIT新论文:数据即上限,扩散模型的关键能力来自图像统计规律,而非复杂架构
|
5月前
|
JSON 供应链 监控
1688商品详情API技术深度解析:从接口架构到数据融合实战
1688商品详情API(item_get接口)可通过商品ID获取标题、价格、库存、SKU等核心数据,适用于价格监控、供应链管理等场景。支持JSON格式返回,需企业认证。Python示例展示如何调用接口获取商品信息。
|
9月前
|
SQL 分布式计算 大数据
大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南
本文深入介绍 Hive 与大数据融合构建强大数据仓库的实战指南。涵盖 Hive 简介、优势、安装配置、数据处理、性能优化及安全管理等内容,并通过互联网广告和物流行业案例分析,展示其实际应用。具有专业性、可操作性和参考价值。
大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南
|
6月前
|
数据采集 监控 数据可视化
数据量暴涨时,抓取架构该如何应对?——豆瓣电影案例调研
本案例讲述了在豆瓣电影数据采集过程中,面对数据量激增和限制机制带来的挑战,如何通过引入爬虫代理、分布式架构与异步IO等技术手段,实现采集系统的优化与扩展,最终支撑起百万级请求的稳定抓取。
366 0
数据量暴涨时,抓取架构该如何应对?——豆瓣电影案例调研
|
6月前
|
SQL 数据采集 数据处理
终于有人把数据架构讲清楚了!
本文深入浅出地解析了数据架构的核心逻辑,涵盖其定义、作用、设计方法及常见误区,助力读者构建贴合业务的数据架构。
|
7月前
|
数据采集 存储 分布式计算
一文读懂数据中台架构,高效构建企业数据价值
在数字化时代,企业面临数据分散、难以统一管理的问题。数据中台架构通过整合、清洗和管理数据,打破信息孤岛,提升决策效率。本文详解其核心组成、搭建步骤及常见挑战,助力企业高效用数。
2234 24
|
10月前
|
存储 运维 Serverless
千万级数据秒级响应!碧桂园基于 EMR Serverless StarRocks 升级存算分离架构实践
碧桂园服务通过引入 EMR Serverless StarRocks 存算分离架构,解决了海量数据处理中的资源利用率低、并发能力不足等问题,显著降低了硬件和运维成本。实时查询性能提升8倍,查询出错率减少30倍,集群数据 SLA 达99.99%。此次技术升级不仅优化了用户体验,还结合AI打造了“一看”和“—问”智能场景助力精准决策与风险预测。
933 69