【Tensorflow+自然语言处理+RNN】实现中文译英文的智能聊天机器人实战(附源码和数据集 超详细)

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: 【Tensorflow+自然语言处理+RNN】实现中文译英文的智能聊天机器人实战(附源码和数据集 超详细)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

一、序列-序列机制概述

Seq2Seq 是一个 Encoder-Decoder 结构的神经网络,它的输入是一个序列(Sequence),输出也是一个序列(Sequence)。在 Encoder 中,将可变长度的序列转变为固定长度的向量表达,Decoder 将这个固定长度的向量转换为可变长度的目标的信号序列。

序列-序列的基本模型包括三个部分,即编码器、解码器以及连接两者的中间状态向量语义编码,编码器通过学习输入,将其编码成固定大小的状态向量,继而将语义编码传给解码器,解码器再通过对状态向量语义编码的学习输出对应的序列 下图是基本工作流程

二、注意力机制

注意力机制与编码器-解码器模型的区别在于不再要求编码器将所有输入信息都编码成固定长度的向量,而是编码成向量的序列。

三、集束搜索概述

Beam Search(集束搜索)是基于Seq2Seq的一种搜索算法,通常用在解空间比较大的情况下,为了减少搜索所占用的空间和时间,在每一步深度扩展的时候,剪掉一些质量比较差的结点,保留下一些质量较高的结点,这样就减少了空间消耗,并提高了时间效率,其缺点是潜在的最佳方案可能被丢弃

四、张量流智能机器人实战

智能客服系统的主要功能根据应用场景不同而变化,通常包括会话管理、任务管理、模型管理和权限管理等功能。

(1)会话管理:包含会话分类、问题查询以及问题更新等功能。

(2)任务管理:包括任务配置、任务更新、模型配置等。

(3)模型管理:包括模型更新、数据更新以及访问接口等。

(4)权限管理:包括权限控制、角色匹配以及业务对接等。

1:语料预处理

中英文本语料,首先按照行将文本信息切分,如果是英文,则将文本变为小写,然后去掉开始和结尾的空白符并各自加上起始标识符和结束标识符,如果是中文文本,则去掉开始和结尾的空白符直接添加起始和结束标识符

通过将文本映射为索引张量信息,输出部分样本,对比中英文词嵌入处理结果如下

2:训练模型

基于参数配置 训练模型 设置训练轮数为10轮,随着训练轮数增加,损失值逐渐降低

 

3:测试结果

模型训练结束后 输入中文获得英文翻译结果 部分结果如下图 翻译结果可能会随着训练轮数和训练样本数量发生一定变化

五、代码

部分代码如下 全部代码和数据集请点赞关注收藏后评论区留言私信~~~

import tensorflow as tf
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from sklearn.model_selection import train_test_split
import unicodedata
import re
import numpy as np
import os
import io
import time
import pathlib
from matplotlib import rcParams
rcParams['font.family'] = ['Microsoft YaHei']
# 下载文件
path_to_zip = tf.keras.utils.get_file(
    'cmn-eng.txt', origin='https://firebasestorage.googleapis.com/v0/b/marine-order-311008.appspot.com/o/cmn-eng.txt?alt=media&token=4d856d2f-ea8b-4ba4-9ba2-9e9dfb8d4080',
    cache_subdir='datasets',extract=False)
path_to_file = pathlib.Path(path_to_zip).parent/'cmn-eng.txt'
#path_to_file = "cmn-eng/cmn.txt"
get_ipython().system('ls  /root/.keras/datasets/')
print(pathlib.Path(path_to_zip).parent)
# In[ ]:
# 将 unicode 文件转换为 ascii
def unicode_to_ascii(s):
    return ''.join(c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn')
def preprocess(text):
    reg = re.compile(r'[a-zA-Z,.?]')
    if reg.match(text):
        text = unicode_to_ascii(text.lower().strip())
        text = re.sub(r"([.!:;,])", r" \1 ", text)
        text = re.sub(r'[" "]+', " ", text)
        text = re.sub(r"[^a-zA-Z?.!,:;]+", " ", text)
    text = text.rstrip().strip()
    text = '<start> ' + text +' <end>'
    return text
# In[ ]:
en_sentence = u"Information Technology has achieved great advancement"
sp_sentence = u"信息技术获得巨大进步"
print(preprocess(en_sentence))
print(preprocess(sp_sentence))
# In[ ]:
# 1. 去除重音符号
# 2. 清理句子
# 3. 返回这样格式的单词对:[ENGLISH, SPANISH]
get_ipython().system('pip install jieba')
import jieba
def  corpus(path, no):
    lines = io.open(path, encoding='UTF-8').read().strip().split('\n')
    english=[]
    chinese=[]
    out
print(sp[100:120])
# In[ ]:
def max_length(tensor):
    return max(len(t) for t in tensor)
# In[ ]:
def tokenize(lang):
  lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(
      filters='')
  lang_tokenizer.fit_on_texts(lang)
  tensor = lang_tokenizer.texts_to_sequences(lang)
  tensor = tf.keras.preprocessing.sequence.pad_sequences(tensor,
                                                         padding='post')
  return tensor, lang_tokenizer
# In[ ]:
def load_dataset(path, num_examples=None):
    # 创建清理过的输入输出对
    targ_lang, inp_lang = corpus(path, num_examples)
    input_tensor, inp_lang_tokenizer = tokenize(inp_lang)
    target_tensor, targ_lang_tokenizer = tokenize(targ_lang)
    return input_tensor, target_tensor, inp_lang_tokenizer, targ_lang_tokenizer
# ### 限制数据集的大小以加快实验速度(可选)
# 
#
# 计算目标张量的最大长度 (max_length)
max_length_targ, max_length_inp = max_length(target_tensor), max_length(input_tensor)
# In[ ]:
# 采用 80 - 20 的比例切分训练集和验证集
input_tensor_train, input_tensor_val, target_tensor_train, target_tensor_val = train_test_split(input_tensor, target_tensor, test_size=0.2)
# 显示长度
print(len(input_tensor_train), len(target_tensor_train), len(input_tensor_val), len(target_tensor_val))
# In[ ]:
def convert(lang, tensor):
  for t in tensor:
    if t!=0:
      print ("%d =====> %s" % (t, lang.index_word[t]))
# In[ ]:
print ("待翻译语言:索引值和文本映射")
convert(inp_lang, input_tensor_train[0])
print ()
pri
BUFFER_SIZE = len(input_tensor_train)
BATCH_SIZE = 64
steps_per_epoch = len(input_tensor_train)//BATCH_SIZE
embedding_dim = 256
units = 1024
vocab_inp_size = len(inp_lang.word_index)+1
vocab_tar_size = len(targ_lang.word_index)+1
dataset = tf.data.Dataset.from_tensor_slices((input_tensor_train, target_tensor_train)).shuffle(BUFFER_SIZE)
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)
# In[ ]:
example_input_batch, example_target_batch = next(iter(dataset))
example_input_batch.shape, example_target_batch.shape
# In[ ]:
class Encoder(tf.keras.Model):
  def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz):
    super(Encoder, self).__init__()
    self.batch_sz = batch_sz
    self.enc_raint=None, mask_zero=False, input_length=None,)
    #self.gru = tf.keras.layers.GRU(self.enc_units,
    #                               return_sequences=True,
    #                               return_state=True,
    #                               recurrent_initializer='glorot_uniform')
    self.gru = tf.keras.layers.GRU(self.enc_units,
                                   return_state=True,
                                   activation='tanh', recurrent_activation='sigmoid',
    use_bias=True, kernel_initializer='glorot_uniform',
    recurrent_initializer='orthogonal',
    bias_initializer='zeros', kernel_regularizer=None,
    recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None,
    kernel_constraint=None, recurrent_constraint=None, bias_constraint=None,
    dropout=0.1, recurrent_dropout=0.1, return_sequences=True, 
    go_backwards=False, stateful=False, unroll=False, time_major=False,
    reset_after=True,)
  def call(self, x, hidden):
    x = self.embedding(x)
    output, state = self.gru(x, initial_state = hidden)
    return output, state
  def initialize_hidden_state(self):
    return tf.zeros((self.batch_sz, self.enc_units))
# In[ ]:
encoder = Encoder(vocab_inp_size, embedding_dim, units, BATCH_SIZE)
# 样本输入
sample_hidden = encoder.initialize_hidden_state()
sample_output, sample_hidden = encoder(example_input_batch, sample_hidden)
print ('Encoder output shape: (batch size, sequence length, units) {}'.format(sample_output.shape))
print ('Encoder Hidden state shape: (batch size, units) {}'.format(sample_hidden.shape))
# In[ ]:
class BahdanauAttention(tf.keras.layers.Layer):
  def __init__(self, units):
    super(BahdanauAttention, self).__init__()
    self.W1 = tf.keras.layers.Dense(units)
    self.W2 = tf.keras.layers.Dense(units)
    self.V = tf.keras.layers.Dense(1)
  def call(self, query, values):
    # 隐藏层的形状 == (批大小,隐藏层大小)
    # hidden_with_time_axis 的形状 == (批大小,1,隐藏层大小)
    # 这样做是为了执行加法以计算分数  
    hidden_with_time_axis = tf.expand_dims(query, 1)
    # 分数的形状 == (批大小,最大长度,1)
    # 我们在最后一个轴上得到 1, 因为我们把分数应用于 self.V
    # 在应用 self.V 之前,张量的形状是(批大小,最大长度,单位)
    score = self.V(tf.nn.tanh(
        self.W1(values) + self.W2(hidden_with_time_axis)))
    # 注意力权重 (attention_weights) 的形状 == (批大小,最大长度,1)
    attention_weights = tf.nn.softmax(score, axis=1)
    # 上下文向量 (context_vector) 求和之后的形状 == (批大小,隐藏层大小)
    context_vector = attention_weights * values
    context_vector = tf.reduce_sum(context_vector, axis=1)
    return context_vector, attention_weights
# In[ ]:
attention_layer = BahdanauAttention(10)
attention_result, attention_weights = attention_layer(sample_hidden, sample_output)
print("Attention result shape: (batch size, units) {}".format(attention_result.shape))
print("Attention weights shape: (batch_size, sequence_length, 1) {}".format(attention_weights.shape))
# In[ ]:
class Decoder(tf.keras.Model):
  def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz):
    super(Decoder, self).__init__()
    self.batch_sz = batch_sz
    self.dec_units = dec_units
    self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
    #self.gru = tf.keras.layers.GRU(self.dec_units,
    #                               return_sequences=True,
    #                               return_state=True,
    #                               recurrent_initializer='glorot_uniform')
    self.gru = tf.keras.layers.GRU(self.dec_units,
                                   return_state=True,
                                   activation='tanh', recurrent_activation='sigmoid',
    use_bias=True, kernel_initializer='glorot_uniform',
    recurrent_initializer='orthogonal',
    bias_initializer='zeros', kernel_regularizer=None,
    recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None,
    kernel_constraint=None, recurrent_constraint=None, bias_constraint=None,
    dropout=0.1, recurrent_dropout=0.1, return_sequences=True, 
    go_backwards=False, stateful=False, unroll=False, time_major=False,
    reset_after=True,)
    self.fc = tf.keras.layers.Dense(units=vocab_size, activation=None, use_bias=True,
    kernel_initializer='glorot_uniform',
    bias_initializer='zeros', kernel_regularizer=None,
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None,
    bias_constraint=None,)
    # 用于注意力
    self.attention = BahdanauAttention(self.dec_units)
  def call(self, x, hidden, enc_output):
    # 编码器输出 (enc_output) 的形状 == (批大小,最大长度,隐藏层大小)
    context_vector, attention_weights = self.attention(hidden, enc_output)
    # x 在通过嵌入层后的形状 == (批大小,1,嵌入维度)
    x = self.embedding(x)
    # x 在拼接 (concatenation) 后的形状 == (批大小,1,嵌入维度 + 隐藏层大小)
    x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)
    # 将合并后的向量传送到 GRU
    output, state = self.gru(x)
    # 输出的形状 == (批大小 * 1,隐藏层大小)
    output = tf.reshape(output, (-1, output.shape[2]))
    # 输出的形状 == (批大小,vocab)
    x = self.fc(output)
    return x, state, attention_weights
# In[ ]:
decoder = Decoder(vocab_tar_size, embedding_dim, units, BATCH_SIZE)
sample_decoder_output, _, _ = decoder(tf.random.uniform((64, 1)),
                                      sample_hidden, sample_output)
print ('Decoder output shape: (batch_size, vocab size) {}'.format(sample_decoder_output.shape))
# ## 定义优化器和损失函数
# In[ ]:
optimizer = tf.keras.optimizers.Adam()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
    from_logits=True, reduction='none')
def loss_function(real, pred):
  mask = tf.math.logical_not(tf.math.equal(real, 0))
  loss_ = loss_object(real, pred)
  mask = tf.cast(mask, dtype=loss_.dtype)
  loss_ *= mask
  return tf.reduce_mean(loss_)
# ## 检查点(基于对象保存)
# In[ ]:
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(optimizer=optimizer,
                                 encoder=encoder,
                                 decoder=decoder)
# ## 训练
# 
# 1. 将 *输入* 传送至 *编码器*,编码器返回 *编码器输出* 和 *编码器隐藏层状态*。
# 2. 将编码器输出、编码器隐藏层状态和解码器输入(即 *开始标记*)传送至解码器。
# 3. 解码器返回 *预测* 和 *解码器隐藏层状态*。
# 4. 解码器隐藏层状态被传送回模型,预测被用于计算损失。
# 5. 使用 *教师强制 (teacher forcing)* 决定解码器的下一个输入。
# 6. *教师强制* 是将 *目标词* 作为 *下一个输入* 传送至解码器的技术。
# 7. 最后一步是计算梯度,并将其应用于优化器和反向传播。
# In[ ]:
@tf.function
def train_step(inp, targ, enc_hidden):
  loss = 0
  with tf.GradientTape() as tape:
    enc_output, enc_hidden = encoder(inp, enc_hidden)
    dec_hidden = enc_hidden
    dec_input = tf.expand_dims([targ_lang.word_index['<start>']] * BATCH_SIZE, 1)
    # 教师强制 - 将目标词作为下一个输入
    for t in range(1, targ.shape[1]):
      # 将编码器输出 (enc_output) 传送至解码器
      predictions, dec_hidden, _ = decoder(dec_input, dec_hidden, enc_output)
      loss += loss_function(targ[:, t], predictions)
      # 使用教师强制
      dec_input = tf.expand_dims(targ[:, t], 1)
  batch_loss = (loss / int(targ.shape[1]))
  variables = encoder.trainable_variables + decoder.trainable_variables
  gradients = tape.gradient(loss, variables)
  optimizer.apply_gradients(zip(gradients, variables))
  return batch_loss
# In[ ]:
EPOCHS = 10
for epoch in range(EPOCHS):
  start = time.time()
  enc_hidden = encoder.initialize_hidden_state()
  total_loss = 0
  for (batch, (inp, targ)) in enumerate(dataset.take(steps_per_epoch)):
    batch_loss = train_step(inp, targ, enc_hidden)
    total_loss += batch_loss
    if batch % 100 == 0:
        print('第 {}轮 第 {} 批 损失值 {:.3}'.format(epoch + 1,
                                                     batch,
                                                     batch_loss.numpy()))
  # 每 2 个周期(epoch),保存(检查点)一次模型
  if (epoch + 1) % 2 == 0:
    checkpoint.save(file_prefix = checkpoint_prefix)
  print('第 {} 轮 损失值 {:.3f}'.format(epoch + 1,
                                      total_loss / steps_per_epoch))
  print('本轮训练时间为 {} 秒 \n'.format(time.time() - start))
# ## 翻译
# 
# * 评估函数类似于训练循环,不同之处在于在这里我们不使用 *教师强制*。每个时间步的解码器输入是其先前的预测、隐藏层状态和编码器输出。
# * 当模型预测 *结束标记* 时停止预测。
# * 存储 *每个时间步的注意力权重*。
# 
# 请注意:对于一个输入,编码器输出仅计算一次。
# In[ ]:
def evaluate(sentence):
    attention_plot = np.zeros((max_length_targ, max_length_inp))
    sentence = preprocess(sentence)
    inputs = [inp_lang.word_index[i] for i in sentence.split(' ')]
    inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs],
                                                           maxlen=max_length_inp,
                                                           padding='post')
    inputs = tf.convert_to_tensor(inputs)
    result = ''
    hidden = [tf.zeros((1, units))]
    enc_out, enc_hidden = encoder(inputs, hidden)
    dec_hidden = enc_hidden
    dec_input = tf.expand_dims([targ_lang.word_index['<start>']], 0)
    for t in range(max_length_targ):
        predictions, dec_hidden, attention_weights = decoder(dec_input,
                                                             dec_hidden,
                                                             enc_out)
        # 存储注意力权重以便后面制图
        attention_weights = tf.reshape(attention_weights, (-1, ))
        attention_plot[t] = attention_weights.numpy()
        predicted_id = tf.argmax(predictions[0]).numpy()
        result += targ_lang.index_word[predicted_id] + ' '
        if targ_lang.index_word[predicted_id] == '<end>':
            return result, sentence, attention_plot
        # 预测的 ID 被输送回模型
        dec_input = tf.expand_dims([predicted_id], 0)
    return result, sentence, attention_plot
# In[ ]:
# 注意力权重制图函数
from matplotlib.font_manager import FontProperties
get_ipython().system('wget -O taipei_sans_tc_beta.ttf https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_&export=download')
get_ipython().system('mv taipei_sans_tc_beta.ttf /usr/local/lib/python3.7/dist-packages/matplotlib//mpl-data/fonts/ttf')
# 自定義字體變數
font = FontProperties(fname=r'/usr/local/lib/python3.7/dist-packages/matplotlib/mpl-data/fonts/ttf/taipei_sans_tc_beta.ttf')
def plot_attention(attention, sentence, predicted_sentence):
    fig = plt.figure(figsize=(6,6))
    ax = fig.add_subplot(1, 1, 1)
    ax.matshow(attention, cmap=plt.get_cmap('Purples'))
    fontdict = {'fontsize': 14}
    ax.set_xticklabels([''] + sentence, fontdict=fontdict, rotation=90, fontproperties=font)
    ax.set_yticklabels([''] + predicted_sentence, fontdict=fontdict)
    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
    plt.show()
# In[ ]:
def translate(sentence):
    result, sentence, attention_plot = evaluate(sentence)
    print('输入文本: %s' % (sentence))
    print('翻译结果: {}'.format(result))
    attention_plot = attention_plot[:len(result.split(' ')), :len(sentence.split(' '))]
    plot_attention(attention_plot, sentence.split(' '), result.split(' '))
# ## 恢复最新的检查点并验证
# In[ ]:
# 恢复检查点目录 (checkpoint_dir) 中最新的检查点
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
# In[ ]:
translate('嗨')
# In[ ]:
translate(u'他 不幸 找 不到 工作')
# In[ ]:
translate(u'我 想 打 电话')
# In[ ]:
# In[ ]:
translate(u'运动 有利 健康')
# In[ ]:
translate(u'我 相信 你 的 判断')
# In[ ]:
translate(u'应该 了解 相应 的 规则')
# In[ ]:
translate(u'我们 终于 达到 了 目标')
# In[ ]:

创作不易 觉得有帮助请点赞关注收藏~~~

目录
打赏
0
1
1
0
153
分享
相关文章
【大作业-03】手把手教你用tensorflow2.3训练自己的分类数据集
本教程详细介绍了如何使用TensorFlow 2.3训练自定义图像分类数据集,涵盖数据集收集、整理、划分及模型训练与测试全过程。提供完整代码示例及图形界面应用开发指导,适合初学者快速上手。[教程链接](https://www.bilibili.com/video/BV1rX4y1A7N8/),配套视频更易理解。
139 0
【大作业-03】手把手教你用tensorflow2.3训练自己的分类数据集
AgiBot World:智元机器人开源百万真机数据集,数据集涵盖了日常生活所需的绝大多数动作
AgiBot World 是智元机器人开源的百万真机数据集,旨在推动具身智能的发展,覆盖家居、餐饮、工业等五大核心场景。
305 9
AgiBot World:智元机器人开源百万真机数据集,数据集涵盖了日常生活所需的绝大多数动作
从词袋到Transformer:自然语言处理的演进与实战
自然语言处理(NLP)是人工智能的重要分支,从早期的规则系统发展到如今的深度学习模型,经历了词袋模型、词嵌入、RNN/LSTM/GRU,再到革命性的Transformer架构。本文通过代码和案例详细介绍了这些技术的演进,并展示了如何从简单的词袋模型过渡到强大的Transformer,涵盖文本分类等实战应用,帮助读者深入理解NLP的核心技术和未来发展潜力。
|
9月前
|
KumiaoQQ机器人框架源码
酷喵机器人框架基于PC协议与MGCH的结合,MGCH即 MiraiGO-CQhttp(代码类型:易语言)基本的API功能已经实现,具体可自测(教程/日志/说明文本已附带)开放源码仅供参考学习交流,切勿非法使用,后果自负!(搞灰黑产的请绕道)本QQrobot框架不签订AGPL协议但遵守Mirai/MiraiGO-CQhttp的AGPL协议。
93 5
KumiaoQQ机器人框架源码
智能电话销售机器人源码搭建部署系统电话机器人源码
智能电话销售机器人源码搭建部署系统电话机器人源码
110 4
智能语音机器人底层系统设计逻辑机器人源码系统逻辑
简介: — 1 —智能客服背景智能语音客服机器人是在传统的客服系统基础上,集成了语音识别、语义理解、知识图谱、深度学习等多项智能交互技术,能准确理解用户的意图或提问,再根据丰富的内容和海量知识图谱,给予用户满意的回答。目前已广泛应用于金融、保险、汽车、房产、电商、政府等多个领域。
量化交易机器人系统开发逻辑策略及源码示例
量化交易机器人是一种通过编程实现自动化交易决策的金融工具。其开发流程包括需求分析、系统设计、开发实现、测试优化、部署上线、风险管理及数据分析。示例中展示了使用Python实现的简单双均线策略,计算交易信号并输出累计收益率。
现货量化交易机器人系统开发策略逻辑及源码示例
现货量化交易机器人系统是一种基于计算机算法和数据分析的自动化交易工具。该系统通过制定交易策略、获取和处理数据、生成交易信号、执行交易操作和控制风险等环节,实现高效、精准的交易决策。系统架构可采用分布式或集中式,以满足不同需求。文中还提供了一个简单的双均线策略Python代码示例。
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
338 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
电话机器人源码-智能ai系统-freeswitch-smartivr呼叫中心-crm
电话机器人源码-智能ai系统-freeswitch-smartivr呼叫中心-crm
251 0

热门文章

最新文章