【Python自然语言处理+tkinter图形化界面】实现智能医疗客服问答机器人实战(附源码、数据集、演示 超详细)

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 【Python自然语言处理+tkinter图形化界面】实现智能医疗客服问答机器人实战(附源码、数据集、演示 超详细)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

一、问答智能客服简介

QA问答是Question-and-Answer的缩写,根据用户提出的问题检索答案,并用用户可以理解的自然语言回答用户,问答型客服注重一问一答处理,侧重知识的推理。

从应用领域视角,可将问答系统分为限定域问答系统和开放域问答系统。

根据支持问答系统产生答案的文档库、知识库,以及实现的技术分类,可分为自然语言的数据库问答系统、对话式问答系统、阅读理解系统、基于常用问题集的问答系统、基于知识库的问答系统等。

智能问答客服功能架构

典型的问答系统包含问题输入 问题理解 信息检索 信息抽取 答案排序 答案生成和结果输出等,首先由用户提出问题,检索操作通过在知识库中查询得到相关信息,并依据特定规则从提取到的信息中抽取相应的候选答案特征向量,最后筛选候选答案结果输出给用户

智能问答客服框架

1: 问题处理 问题处理流程识别问题中包含的信息,判断问题的主题信息和主题范畴归属,比如是属于一般类问题还是属于特定主题类问题,然后提取与主题相关的关键信息,比如人物信息、地点信息和时间信息等。

2 :问题映射 根据用户咨询的问题,进行问题映射消除歧义。通过字符串相似度匹配和同义词表等解决映射问题,根据需要执行拆分和合并操作。

3 :查询构建 通过对输入问题进行处理,将问题转化为计算机可以理解的查询语言,然后查询知识图谱或者数据库,通过检索获得相应备选答案。

4 :知识推理 根据问题属性进行推理,问题基本属性如果属于知识图谱或者数据库中的已知定义信息,则可以从知识图谱或者数据库中查找,直接返回答案。如果问题属性是未定义类问题,则需要通过机器算法推理生成答案。

5: 消岐排序 根据知识图谱中查询返回的一个或者多个备选答案,结合问题属性进行消歧处理和优先级排序,输出最佳答案。

二、智能医疗客服问答实战

定制性智能客服程序一般需要实现选择语料库,去除噪声信息后 根据算法对预料进行训练,最后提供人机接口问答对话,基于互联网获得的医学语料库,并通过余弦相似度基本原理,设计并开发以下问答型智能医疗客服应用程序

项目结构如下

效果展示

下面是csv文件中定义的一些病例

预先定义好的欢迎语句

运行chatrobot文件  弹出以下窗口 输出问题后点击提交咨询即可  

对于语料库中没有的问题会自动推断给出答案(通常不太准确)

三、代码

部分代码如下 全部代码和数据集请点赞关注收藏后评论区留言私信

# -*- coding:utf-8 -*-
from fuzzywuzzy import fuzz
import sys
import jieba
import csv
import pickle
print(sys.getdefaultencoding())
import logging
from fuzzywuzzy import fuzz
import math
from scipy import sparse
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from scipy.sparse import lil_matrix
from sklearn.naive_bayes import MultinomialNB
import warnings
from tkinter import *
import time
import difflib
from collections import Counter
import numpy as np
filename = 'label.csv'
def tokenization(filename):
    corpus = []
    label = []
    question = []
    answer = []
    with open(filename, 'r', encoding="utf-8") as f:
        data_corpus = csv.reader(f)
        next(data_corpus)
        for words in data_corpus:
            word = jieba.cut(words[1])
            tmp = ''
            for x in word:
                tmp += x
            corpus.append(tmp)
            question.append(words[1])
            label.append(words[0])
            answer.append(words[2])
    with open('corpus.h5','wb') as f:
        pickle.dump(corpus,f)
    with open('label.h5','wb') as f:
        pickle.dump(label,f)
    with open('question.h5', 'wb') as f:
        pickle.dump(question, f)
    with open('answer.h5', 'wb') as f:
        pickle.dump(answer, f)
    return corpus,label,question,answer
def train_model():
    with open('corpus.h5','rb') as f_corpus:
        corpus = pickle.load(f_corpus)
    with open('label.h5','rb') as f_label:
        label = pickle.load(f_label,encoding='bytes')
    vectorizer = CountVectorizer(min_df=1)
    transformer = TfidfTransformer()
    tfidf = transformer.fit_transform(vectorizer.fit_transform(corpus))
    words_frequency = vectorizer.fit_transform(corpus)
    word = vectorizer.get_feature_names()
    saved = tfidf_calculate(vectorizer.vocabulary_,sparse.csc_matrix(words_frequency),len(corpus))
    model = MultinomialNB()
    model.fit(tfidf,label)
    with open('model.h5','wb') as f_model:
        pickle.dump(model,f_model)
    with open('idf.h5','wb') as f_idf:
        pickle.dump(saved,f_idf)
    return model,tfidf,label
class tfidf_calculate(object):
    def __init__(self,feature_index,frequency,docs):
        self.feature_index = feature_index
        self.frequency = frequency
        self.docs = docs
        self.len = len(feature_index)
    def key_count(self,input_words):
        keys = jieba.cut(input_words)
        count = {}
        for key in keys:
            num = count.get(key, 0)
            count[key] = num + 1
        return count
    def getTfidf(self,input_words):
        count = self.key_count(input_words)
        result = lil_matrix((1, self.len))
        frequency = sparse.csc_matrix(self.frequency)
        for x in count:
            word = self.feature_index.get(x)
            if word != None and word>=0:
                word_frequency = frequency.getcol(word)
                feature_docs = word_frequency.sum()
                tfidf = count.get(x) * (math.log((self.docs+1) / (feature_docs+1))+1)
                result[0, word] = tfidf
        return result    
if __name__=="__main__":
    tokenization(filename)
    train_model()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
3月前
|
存储 自然语言处理 机器人
基于的Qwen模型的智能客服Discord机器人,使用🐫 CAMEL、SambaNova、Firecrawl和Qdrant实现RAG Agent
基于Qwen模型的智能客服Discord机器人,使用CAMEL、SambaNova、Firecrawl和Qdrant实现RAG Agent。构建了一个能够处理复杂问题并能进行快速响应的强大聊天机器人。该机器人可在Discord平台上运行,支持实时对话和语义搜索,提供准确、全面的回答。项目包含详细的安装步骤、代码示例及集成指南,适合开发者快速上手。
|
17天前
|
自然语言处理 算法 机器人
2025年热门智能客服机器人评测:哪款更好用?
2025年,智能客服机器人市场竞争激烈,功能日益强大。主要品牌如合力亿捷、阿里云、华为云、京东京小智和小米商城等纷纷推出具备精准语音识别、语义理解、多渠道接入等功能的产品,广泛应用于电商、金融、零售等领域,显著提升客服效率与客户满意度,降低企业运营成本。
56 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
盘点2024年最先进的智能客服机器人TOP10 #SaaS产品#
综合市场数据和用户口碑为大家盘点10大主流服务商
205 4
|
4月前
|
人工智能 自然语言处理 搜索推荐
年度排名 | 2024年最受市场欢迎的智能客服机器人有哪些?
本文分析了2024年智能客服机器人的发展现状,并介绍了国内五大主流服务商——合力亿捷等,并重点阐述了它们的核心功能和服务优势,如多渠道对接、大模型应用、个性化服务、AI自动生成小结等,旨在帮助企业根据自身需求选择合适的智能客服解决方案。
95 1
|
4月前
|
人工智能 自然语言处理 语音技术
利用Python进行自然语言处理(NLP)
利用Python进行自然语言处理(NLP)
83 1
|
5月前
|
人工智能 自然语言处理 语音技术
利用Python进行自然语言处理(NLP)
利用Python进行自然语言处理(NLP)
100 3
|
6月前
|
安全 搜索推荐 机器人
纳米技术与医疗:纳米机器人的临床应用前景
【9月更文挑战第28天】纳米机器人作为纳米技术在医疗领域的重要应用,正逐步改变着传统医疗的面貌。它们在药物输送、癌症治疗、手术辅助和疾病诊断等方面展现出广阔的应用前景。随着科学技术的不断进步和纳米技术的不断成熟,我们有理由相信,纳米机器人将成为医疗领域的一个重要且不可或缺的组成部分,为人类的健康事业做出更大的贡献。同时,我们也应关注纳米技术的安全性和可靠性问题,确保其在医疗应用中的安全和有效。
|
6月前
|
搜索推荐 机器人 云计算
纳米机器人:医疗领域的微型革命与精准治疗
【9月更文挑战第16天】随着科技的飞速发展,纳米技术成为推动多个领域变革的重要力量。在医疗领域,纳米机器人以其独特优势引领着微型革命与精准治疗新时代。本文探讨其在药物输送、癌症治疗、手术辅助及疾病诊断中的应用,并分析其小型化、精准化、智能化与综合化的优势。尽管面临制造技术、体内控制等挑战,但随着科技的进步,纳米机器人有望成为人类健康的重要保障。
304 10
|
6月前
|
机器学习/深度学习 自然语言处理 搜索推荐
探索深度学习与自然语言处理(NLP)在智能客服系统中的创新应用
探索深度学习与自然语言处理(NLP)在智能客服系统中的创新应用
423 0
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】python之人工智能应用篇——文本生成技术
文本生成是指使用自然语言处理技术,基于给定的上下文或主题自动生成人类可读的文本。这种技术可以应用于各种领域,如自动写作、聊天机器人、新闻生成、广告文案创作等。
266 8

热门文章

最新文章