PyTorch搭建基于图神经网络(GCN)的天气推荐系统(附源码和数据集)

简介: PyTorch搭建基于图神经网络(GCN)的天气推荐系统(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言留下QQ~~~

一、背景

极端天气情况一直困扰着人们的工作和生活。部分企业或者工种对极端天气的要求不同,但是目前主流的天气推荐系统是直接将天气信息推送给全部用户。这意味着重要的天气信息在用户手上得不到筛选,降低用户的满意度,甚至导致用户的经济损失。我们计划开发一个基于图神经网络的天气靶向模型,根据用户的历史交互行为,判断不同天气对他的利害程度。如果有必要,则将该极端天气情况推送给该用户,让其有时间做好应对准备。该模型能够减少不必要的信息传递,提高用户的体验感。

二、模型介绍

四、模型介绍

(一)数据集共有三个txt文件,分别是user.txt,weather.txt,rating.txt。这些文件一共包含900名用户,1600个天气状况,95964条用户的历史交互记录。

  1. user.txt

用户的信息记录在user.txt中。格式如下:

用户ID\t年龄\t性别\t职业\t地理位置

  1. weather.txt

天气的信息记录在weather.txt中。格式如下:

天气ID\t天气类型\t温度\t湿度\t风速

  1. rating.txt

用户的历史交互记录在rating.txt中。格式如下:

用户ID\t天气ID\t评分

三、项目结构

如下图 data里面存放了数据集

四、运行结果

开始训练  可以看到第一行显示了一些训练的基本配置内容 包括用的设备cpu 训练批次 学习率等等

可以看出随着训练次数的增加 损失率在不断降低

最后会自动选出一个最佳的测试和训练集的损失值

结果可视化如下

五、代码

部分源码如下

train类

import pandas as pd
import time
from utils import fix_seed_torch, draw_loss_pic
import argparse
from model import GCN
from Logger import Logger
from mydataset import MyDataset
import torch
from torch.nn import MSELoss
from torch.optim import Adam
from torch.utils.data import DataLoader, random_split
import sys
import os
os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
# 固定随机数种子
fix_seed_torch(seed=2021)
# 设置训练的超参数
parser = argparse.ArgumentParser()
parser.add_argument('--gcn_layers', type=int, default=2, help='the number of gcn layers')
parser.add_argument('--n_epochs', type=int, default=20, help='the number of epochs')
parser.add_argument('--embedSize', type=int, default=64, help='dimension of user and entity embeddings')
parser.add_argument('--batch_size', type=int, default=1024, help='batch size')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--ratio', type=float, default=0.8, help='size of training dataset')
args = parser.parse_args()
# 设备是否支持cuda
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
args.device = device
# 读取用户特征、天气特征、评分
user_feature = pd.read_csv('./data/user.txt', encoding='utf-8', sep='\t')
item_feature = pd.read_csv('./data/weather.txt', encoding='utf-8', sep='\t')
rating = pd.read_csv('./data/rating.txt', encoding='utf-8', sep='\t')
# 构建数据集
dataset = MyDataset(rating)
trainLen = int(args.ratio * len(dataset))
train, test = random_split(dataset, [trainLen, len(dataset) - trainLen])
train_loader = DataLoader(train, batch_size=args.batch_size, shuffle=True, pin_memory=True)
test_loader = DataLoader(test, batch_size=len(test))
# 记录训练的超参数
start_time = '{}'.format(time.strftime("%m-%d-%H-%M", time.localtime()))
logger = Logger('./log/log-{}.txt'.format(start_time))
logger.info(' '.join('%s: %s' % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
# 定义模型
model = GCN(args, user_feature, item_feature, rating)
model.to(device)
# 定义优化器
optimizer = Adam(model.parameters(), lr=args.lr, weight_decay=0.001)
# 定义损失函数
loss_function = MSELoss()
train_result = []
test_result = []
# 最好的epoch
best_loss = sys.float_info.max
# 训练
for i in range(args.n_epochs):
    model.train()
    for batch in train_loader:
        optimizer.zero_grad()
        prediction=model(batch[0].to(device),batch[1].to(device))
        train_loss=torch.sqrt(loss_function(batch[2].float().to(device),prediction))
        train_loss.backward()
        optimizer.step()
    train_result.append(train_loss.item())
    model.eval()
    for data in test_loader:
        prediction=model(data[0].to(device),data[1].to(device))
        test_loss=torch.sqrt(loss_function(data[2].float().to(device),prediction))
        test_loss=test_loss.item()
        if best_loss>test_loss:
            best_loss=test_loss
            torch.save(model.state_dict(),'./model/bestModeParms-{}.pth'.format(start_time))
    test_result.append(test_loss)
    logger.info("Epoch{:d}:trainLoss{:.4f},testLoss{:.4f}".format(i,train_loss,test_loss))
else:
    model.load_state_dict(torch.load("./model/bestModeParms-11-18-19-47.pth"))
    user_id=input("请输入用户id")
    item_num=rating['itemId'].max()+1
    u=torch.tensor([int(user_id)for i in range(item_num)],dtype=float)
  气ID".format(user_id))
    print(i[0]for i in result)
# 画图
draw_loss_pic(train_result, test_result)

Logger类

import sys
import os
import logging
class Logger(object):
    def __init__(self, filename):
        self.logger = logging.getLogger(filename)
        self.logger.setLevel(logging.DEBUG)
        formatter = logging.Formatter('%(asctime)s: %(message)s',
                                      datefmt='%Y-%m-%d %H-%M-%S')
        # write into file
        fh = logging.FileHandler(filename)
        fh.setLevel(logging.DEBUG)
        fh.setFormatter(formatter)
        # show on console
        ch = logging.StreamHandler(sys.stdout)
        ch.setLevel(logging.DEBUG)
        ch.setFormatter(formatter)
        # add to Handler
        self.logger.addHandler(fh)
        self.logger.addHandler(ch)
    def _flush(self):
        for handler in self.logger.handlers:
            handler.flush()
    def info(self, message):
        self.logger.info(message)
        self._flush()

model类

import numpy as np
import torch.nn
import torch.nn as nn
from utils import *
from torch.nn import Module
import scipy.sparse as sp
class GCN_Layer(Module):
    def __init__(self,inF,outF):
        super(GCN_Layer,self).__init__()
        self.W1=torch.nn.Linear(in_features=inF,out_features=outF)
        self.W2=torch.nn.Linear(in_features=inF,out_features=outF)
    def forward(self,graph,selfLoop,features):
        part1=self.W1(torch.sparse.mm(graph+selfLoop,features))
        part2 = self.W2(torch.mul(torch.sparse.mm(graph,features),features))
        return nn.LeakyReLU()(part1+part2)
    ######################
    #    请你补充代码       #
    ######################
class GCN(Module):
    def __init__(self, args, user_feature, item_feature, rating):
        super(GCN, self).__init__()
        self.args = args
        self.device = args.device
        self.user_feature = user_feature
        self.item_feature = item_feature
        self.rating = rating
        self.num_user = rating['user_id'].max() + 1
        self.num_item = rating['item_id'].max() + 1
        # user embedding
        self.user_id_embedding = nn.Embedding(user_feature['id'].max() + 1, 32)
        self.user_age_embedding = nn.Embedding(user_feature['age'].max() + 1, 4)
        self.user_gender_embedding = nn.Embedding(user_feature['gender'].max() + 1, 2)
        self.user_occupation_embedding = nn.Embedding(user_feature['occupation'].max() + 1, 8)
        self.user_location_embedding = nn.Embedding(user_feature['location'].max() + 1, 18)
        # item embedding
        self.item_id_embedding = nn.Embedding(item_feature['id'].max() + 1, 32)
        self.item_type_embedding = nn.Embedding(item_feature['type'].max() + 1, 8)
        self.item_temperature_embedding = nn.Embedding(item_feature['temperature'].max() + 1, 8)
        self.item_humidity_embedding = nn.Embedding(item_feature['humidity'].max() + 1, 8)
        self.item_windSpeed_embedding = nn.Embedding(item_feature['windSpeed'].max() + 1, 8)
        # 自循环
        self.selfLoop = self.getSelfLoop(self.num_user + self.num_item)
        # 堆叠GCN层
        self.GCN_Layers = torch.nn.ModuleList()
        for _ in range(self.args.gcn_layers):
            self.GCN_Layers.append(GCN_Layer(self.args.embedSize, self.args.embedSize))
        self.graph = self.buildGraph()
        self.transForm = nn.Linear(in_features=self.args.embedSize * (self.args.gcn_layers + 1),
                                   out_features=self.args.embedSize)
    def getSelfLoop(self, num):
        i = torch.LongTensor(
            [[k for k in range(0, num)], [j for j in range(0, num)]])
        val = torch.FloatTensor([1] * num)
        return torch.sparse.FloatTensor(i, val).to(self.device)
    def buildGraph(self):
        rating=self.rating.values
        graph=sp.coo_matrix(
            (rating[:,2],(rating[:,0],rating[:,1])),shape=(self.num_user,self.num_item)).tocsr()
        graph=sp.bmat([[sp.csr_matrix((graph.shape[0],graph.shape[0])),graph],
                       [graph.T,sp.csr_matrix((graph.shape[1],graph.shape[1]))]])
        row_sum_sqrt=sp.diags(1/(np.sqrt(graph.sum(axis=1).A.ravel())+1e-8))
        col_sum_sqrt = sp.diags(1 / (np.sqrt(graph.sum(axis=0).A.ravel()) + 1e-8))
        graph=row_sum_sqrt@graph@col_sum_sqrt
        graph=graph.tocoo()
        values=graph.data
        indices=np.vstack((graph.row,graph.col))
        graph=torch.sparse.FloatTensor(torch.LongTensor(indices),torch.FloatTensor(values),torch.Size(graph.shape))
        return graph.to(self.device)
        ######################
        #    请你补充代码       #
        ######################
    def getFeature(self):
        # 根据用户特征获取对应的embedding
        user_id = self.user_id_embedding(torch.tensor(self.user_feature['id']).to(self.device))
        age = self.user_age_embedding(torch.tensor(self.user_feature['age']).to(self.device))
        gender = self.user_gender_embedding(torch.tensor(self.user_feature['gender']).to(self.device))
        occupation = self.user_occupation_embedding(torch.tensor(self.user_feature['occupation']).to(self.device))
        location = self.user_location_embedding(torch.tensor(self.user_feature['location']).to(self.device))
        user_emb = torch.cat((user_id, age, gender, occupation, location), dim=1)
        # 根据天气特征获取对应的embedding
        item_id = self.item_id_embedding(torch.tensor(self.item_feature['id']).to(self.device))
        item_type = self.item_type_embedding(torch.tensor(self.item_feature['type']).to(self.device))
        temperature = self.item_temperature_embedding(torch.tensor(self.item_feature['temperature']).to(self.device))
        humidity = self.item_humidity_embedding(torch.tensor(self.item_feature['humidity']).to(self.device))
        windSpeed = self.item_windSpeed_embedding(torch.tensor(self.item_feature['windSpeed']).to(self.device))
        item_emb = torch.cat((item_id, item_type, temperature, humidity, windSpeed), dim=1)
        # 拼接到一起
        concat_emb = torch.cat([user_emb, item_emb], dim=0)
        return concat_emb.to(self.device)
    def forward(self, users, items):
        features=self.getFeature()
        final_emb=features.clone()
        for GCN_Layer in self.GCN_Layers:
            features=GCN_Layer(self.graph,self.selfLoop,features)
            final_emb=torch.cat((final_emb,features.clone()),dim=1)
        user_emb,item_emb=torch.split(final_emb,[self.num_user,self.num_item])
        user_emb=user_emb[users]
        item_emb=item_emb[items]
        user_emb=self.transForm(user_emb)
        item_emb=self.transForm(item_emb)
        prediction=torch.mul(user_emb,item_emb).sum(1)
        return prediction
        ######################
        #    请你补充代码       #
        ######################

mydataset类

from torch.utils.data import Dataset
import pandas as pd
class MyDataset(Dataset):
    def __init__(self, rating):
        super(Dataset, self).__init__()
        self.user = rating['user_id']
        self.weather = rating['item_id']
        self.rating = rating['rating']
    def __len__(self):
        return len(self.rating)
    def __getitem__(self, item):
        return self.user[item], self.weather[item], self.rating[item]

utils类

from torch.utils.data import Dataset
import pandas as pd
class MyDataset(Dataset):
    def __init__(self, rating):
        super(Dataset, self).__init__()
        self.user = rating['user_id']
        self.weather = rating['item_id']
        self.rating = rating['rating']
    def __len__(self):
        return len(self.rating)
    def __getitem__(self, item):
        return self.user[item], self.weather[item], self.rating[item]

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
30天前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
3月前
|
并行计算 开发工具 异构计算
在Windows平台使用源码编译和安装PyTorch3D指定版本
【10月更文挑战第6天】在 Windows 平台上,编译和安装指定版本的 PyTorch3D 需要先安装 Python、Visual Studio Build Tools 和 CUDA(如有需要),然后通过 Git 获取源码。建议创建虚拟环境以隔离依赖,并使用 `pip` 安装所需库。最后,在源码目录下运行 `python setup.py install` 进行编译和安装。完成后即可在 Python 中导入 PyTorch3D 使用。
321 0
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
6月前
|
JavaScript Java 测试技术
基于springboot+vue.js+uniapp的网络在线考试系统附带文章源码部署视频讲解等
基于springboot+vue.js+uniapp的网络在线考试系统附带文章源码部署视频讲解等
59 0
基于springboot+vue.js+uniapp的网络在线考试系统附带文章源码部署视频讲解等
|
6月前
|
存储 Java Unix
(八)Java网络编程之IO模型篇-内核Select、Poll、Epoll多路复用函数源码深度历险!
select/poll、epoll这些词汇相信诸位都不陌生,因为在Redis/Nginx/Netty等一些高性能技术栈的底层原理中,大家应该都见过它们的身影,接下来重点讲解这块内容。
103 0
|
6月前
|
JavaScript Java 测试技术
基于SpringBoot+Vue+uniapp的网络安全科普系统的详细设计和实现(源码+lw+部署文档+讲解等)
基于SpringBoot+Vue+uniapp的网络安全科普系统的详细设计和实现(源码+lw+部署文档+讲解等)
|
6月前
|
JavaScript Java 测试技术
基于springboot+vue.js+uniapp的网络互联实验平台附带文章源码部署视频讲解等
基于springboot+vue.js+uniapp的网络互联实验平台附带文章源码部署视频讲解等
59 0
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。