展示出图效果
1 VMD分解算法
VMD 分解又叫变分模态分解,英文全称为Variational Mode Decomposition。
VMD是一种新型的信号分解方法,它是通过使用变分推断方法将信号分解为一组局部振动模式,每个模式包含多个频率组件。VMD的主要步骤如下:
- 将原始信号进行多次低通滤波,得到多个频带信号。
- 对每个频带信号进行变分推断,得到该频带信号的局部振动模式。
- 将所有频带信号对应的局部振动模式相加,得到原始信号的 VMD 分解。 VMD 分解具有以下优点:能够自动提取信号的局部特征,避免了传统分解方法中需要手动选择基函数的问题;能够处理非线性和非平稳信号,并且不会产生模态重叠的问题。因此,VMD 在信号处理、图像处理和模式识别等领域也得到了广泛的应用。
关于简短的代码视频教程均可关注B站、小红书、知乎同名账号(Lwcah)观看教程~
MATLAB 信号分解第七期-VMD 分解:
https://mbd.pub/o/bread/ZJWZmppu
信号分解全家桶详情请参见:
https://mbd.pub/o/author-aWWWnHBsYw==/work
2 FFT傅里叶频谱变换算法
傅里叶变换是一种数学方法,用于将一个信号分解成一系列正弦和余弦函数的和,从而更好地理解和处理信号。傅里叶变换在信号处理领域有着广泛的应用,包括音频处理、图像处理等。 具体来说,傅里叶变换的步骤如下:
- 给定一个连续时间域函数f(t),其中t为时间。
- 对f(t)进行傅里叶变换,得到它的频率域表示F(ω),其中ω为角频率。
- F(ω)表示了f(t)中所有频率分量的幅度和相位信息。
- 将F(ω)分解成一系列正弦和余弦函数的和,即: F(ω) = ∑[a(k)cos(kω) + b(k)sin(kω)] 其中,k为频率分量的序号,a(k)和b(k)分别为对应的正弦和余弦函数的系数。 傅里叶变换的优点是可以将时间域中的信号转换成频率域中的信号,从而更好地理解信号的频率分量和周期性特征,同时也方便进行一些信号处理任务,例如滤波、降噪等。缺点是傅里叶变换需要对整个信号进行处理,计算量较大,在实时处理等场景下可能会存在较大的延迟。
MATLAB | 频谱分析算法 | 傅里叶变换 开源 MATLAB 代码请转:
https://mbd.pub/o/bread/ZJmVlJxr
MATLAB | 9种频谱分析算法全家桶详情请参见:
https://mbd.pub/o/bread/ZJmVlJ5x
3 VMD信号分解+FFT傅里叶频谱变换组合算法
如下为简短的视频操作教程。
【MATLAB 】 VMD信号分解+FFT傅里叶频谱变换组合算法请转:
https://mbd.pub/o/bread/ZJ6Wm5tx
【MATLAB 】信号分解+FFT傅里叶频谱变换组合算法全家桶详情请参见:
https://mbd.pub/o/bread/ZJ6Wm5xy
关于代码有任何疑问,可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~