Python 教程之 Pandas(9)—— 创建 Pandas Series

简介: Python 教程之 Pandas(9)—— 创建 Pandas Series

Pandas series 是一个一维标记数组,能够保存任何类型的数据(整数、字符串、浮点数、python 对象等)。轴标签统称为索引。Pandas 系列只不过是 Excel 工作表中的一列。标签不必是唯一的,但必须是可散列的类型。该对象支持整数和基于标签的索引,并提供了许多方法来执行涉及索引的操作。


创建 Pandas Series

在现实世界中,将通过从现有存储中加载数据集来创建 Pandas Series,存储可以是 SQL 数据库、CSV 文件和 Excel 文件。Pandas 系列可以从列表、字典和标量值等创建。系列可以通过不同的方式创建,以下是我们创建系列的一些方法:

从数组创建 Series: 为了从数组创建系列,我们必须导入一个 numpy 模块并且必须使用 array() 函数。

# import pandas as pd
import pandas as pd
# import numpy as np
import numpy as np
# 简单数组
data = np.array(['g','e','e','k','s'])
ser = pd.Series(data)
print(ser)

输出 :

image.png

从列表创建系列:

为了从列表创建系列,我们必须首先创建一个列表,然后我们可以从列表创建系列。

import pandas as pd
# 一个简单的列表
list = ['g', 'e', 'e', 'k', 's']
# 从列表创建系列
ser = pd.Series(list)
print(ser)

输出 :

image.png

感谢大家的阅读,有什么问题的话可以在评论中告诉我。希望大家能够给我来个点赞+收藏+评论 ,你的支持是海海更新的动力!后面我会持续分享前端 & 后端相关的专业知识。


目录
相关文章
|
15天前
|
存储 数据挖掘 数据处理
掌握Pandas核心数据结构:Series与DataFrame的四种创建方式
本文介绍了 Pandas 库中核心数据结构 Series 和 DataFrame 的四种创建方法,包括从列表、字典、标量和 NumPy 数组创建 Series,以及从字典、列表的列表、NumPy 数组和 Series 字典创建 DataFrame,通过示例详细说明了每种创建方式的具体应用。
111 67
|
3天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
30 8
|
3天前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
21 7
|
3天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
22 4
|
3天前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
20 5
|
15天前
|
存储 数据挖掘 索引
Pandas Series 和 DataFrame 常用属性详解及实例
Pandas 是 Python 数据分析的重要工具,其核心数据结构 Series 和 DataFrame 广泛应用。本文详细介绍了这两种结构的常用属性,如 `index`、`values`、`dtype` 等,并通过具体示例帮助读者更好地理解和使用这些属性,提升数据分析效率。
31 4
|
26天前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
24 1
|
26天前
|
BI Python
SciPy 教程 之 Scipy 显著性检验 8
本教程介绍SciPy中显著性检验的应用,包括如何利用scipy.stats模块进行显著性检验,以判断样本与总体假设间的差异是否显著。通过示例代码展示了如何使用describe()函数获取数组的统计描述信息,如观测次数、最小最大值、均值、方差等。
27 1
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
71 0
|
3月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
98 0