2022年全国大学生数学建模竞赛E题目-小批量物料生产安排详解+思路+Python代码时序预测模型(三)

简介: 2022年全国大学生数学建模竞赛E题目-小批量物料生产安排详解+思路+Python代码时序预测模型(三)

前言


千呼万唤始出来啊家人们,真的是累死我了兄弟们,我昨天上了一天的班,晚上还整这个国赛敲代码敲到晚上2点才睡觉,搞得我也像是在比赛一样,麻了。不过一直写到现在也答应了很多小伙伴今天上午一定要写完E题第一问的思路和解析的,现在终于是把全部第一问的问题都梳理清楚,思路也理明白了。周预测模型其实小伙伴们不用限制的那么死,无非就是时序预测模型,周数简化甚至一般的机器学习模型都能直接预测,只不过效果不会有时序预测模型做的那么好,会产生数据波动。不懂什么时序预测模型的小伙伴可以去看我的个人专栏哈:


e7dd40dd9a024ee798be109d0f2baf7c.png

基于大多数模都是小白新手上路我采用了一种可以说得上是十分亲民的时序预测方法也能很好的达到时序预测模型的效果。粉丝内部可以得到更多的思路和代码,期待各位的关注。好了废话不多说我们开始继续解答吧!


博主会长期维护博文,有错误或者疑惑可以在评论区指出,感谢大家的支持。


一、六种物料挑选


六种物料挑选我在上篇文章:


2022年全国大学生数学建模竞赛E题目-小批量物料生产安排详解+思路+Python代码时序预测模型(二)_fanstuck的博客-CSDN博客


可以说的上是很明确了,大家只要按照这个思路走肯定是不会有问题挑选出明确的六种物料的。


但是还是有很多小伙伴不是很明白这里我再多嘴几句话:


秩和比的值能够包含所有评价指标的信息,显示出这些评价指标的综合水平,RSR值越大表明综合评价越优。


但有时还需实事求是地加以限定.例如病床利用率、平均病床周转次数一般可作高优指标理解,但过高也不见得是好事。


除区分高优指标与低优指标外,有时还要运用不分高优与低优及其种种组合形式,例如在疗效评价中,微效率可视为偏高优(高优与不分的均数),不变率可视为稍低优(偏低优与“不分”的均数)。总之,编秩的技巧问题要从业务出发来合理地解决。综合评价的方法一般是主客观结合的,方法的选择需基于实际指标数据情况选定,最为关键的是指标的选取,以及指标权重的设置,这些需要基于广泛的调研和扎实的业务知识,不能说单纯的从数学上解决的。


主要的是权重问题。


二、周数处理


第一问的难点可以说有三个:


  • 数据处理获取特征数据集,挑选出六种最高权重的物料
  • 周数处理获得时序数据集
  • 建立周预测模型评价数据集


目前我的文章思路一和二已经完美解答了第一个难点,现在这篇文章来处理接下来这两个难点。


我们根据挑选的六种物料的数据可以发现,每个物料的周数都不是连续的,

9b4c1150b6d94b47b7934995bfab4c20.png


每个物料需求都是有时间断层的,这里我们需要拥有一定的时序数据处理能力,我这里全部都是使用的Pandas处理,对Pandas时间序列数据处理不是很熟练的小伙伴可以去追更我的Pandas专栏,里面有非常详细的处理Pandas时间序列数据的文章,对付这个问题十分够用了。但是得到了周数还是会存在一些小问题:


  • 如相同周数的需求量如何处理?
  • 2020、2021、2022的年份周数又得如何计算呢?
  • 年度首周和尾周应该如何得到正确周数呢?


这些都是需要考虑的点。我们需要将周数和年份一起结合起来判断,得到正确每年周数,从而获得真实周数。这里给大家展示一下我的处理结果:

d4974046b39b4410a52de3f6f7da7955.png


我们可以根据Pandas的强大功能提取出周数和年份结合判断得到真实周数。


这里还需要处理一下真实周数相同的问题,大家一直对这个处理完全没有头绪,昨天晚上微信都被打爆了就是这个问题。Pandas如何处理两列的关系呢?这里我直接给出源码好吧:

pre_1=df_get_re1[['需求量','真实周数']]
def get_pre(df):
    list_q=[]
    m=1
    for i in range(pre_1.shape[0]):
        sum=df['需求量'][i]
        for j in range(i+m,pre_1.shape[0]):
            if df['真实周数'][i]==df['真实周数'][j]:
                sum=sum+df['需求量'][j]
        list_q.append(sum)
    return list_q

当然这是我早期测试代码,现在已经优化不需要这么复杂,大家可以参考这个思路。得到最终的时序预测数据集了:


7880b68143db47418e5ad6fbfab973ea.png


我已经写到这么细化的份上了,求个大家的关注和点赞不过分吧!以后的数模比赛只要我还有时间肯定会第一时间写出免费开源思路,你们的关注和点赞就是我写作的动力!!!


三、时序预测模型


既然得到了最终预测数据,那么时间预测模型也是呼之欲出了。

这里有相当多的时序预测模型可以供给大家选择:

fecbae11cbf541d1bd661932c2544f0b.png

简单套用一下即可,但是选择模型之前我们仍然需要观测一下数据集,是否符合我们使用时序预测模型的类型,可以绘制散点图来更加直观的观看:


379b39a19495414cb7b46b7181e643d1.png


deeb031fc6a342c39414ca3a2f3fb9ab.png


我们会发现这些数据都十分的离散,随着周数波动的十分跳跃,这里我们要根据实际情况选择更加贴切实际的时序预测模型,数据决定了模型的好坏。


模型预测结果


模型挑选这里需要考虑的点比较多,一般都是由经验和数据集主导,这里直接跳过了,直接呈上结果:

c88186e46430493387e0b38e134f79d0.png



d743fbc5eb6b43e39d49fe6500169979.png


效果还是十分不错的。


这里有很多评价模型效果的指标,比如残差值和残差率都可以考虑。


好了第一问已经完全结束了,马上开始大家万众期待的第二问解析!!!


目录
相关文章
|
3月前
|
机器学习/深度学习 算法 数据挖掘
【2024 华数杯 国际数学建模竞赛】B题 Photovoltaic Power光伏发电 34页论文及python 代码
本文通过建立数学模型和应用多种数据分析方法,研究了中国电力供应与光伏发电的发展趋势、光伏电站建设的可行性、中国光伏发电的最大潜力、清洁能源替代燃煤发电的可能性,以及光伏发电在实现国家碳中和战略目标中的作用,并提出了相关政策建议。
87 4
【2024 华数杯 国际数学建模竞赛】B题 Photovoltaic Power光伏发电 34页论文及python 代码
|
2月前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1663 17
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
2月前
|
机器学习/深度学习 监控 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 E题:高速公路应急车道紧急启用模型 问题分析、数学模型及Python代码
2024年中国研究生数学建模竞赛E题要求建立高速公路应急车道紧急启用模型,以缓解特定路段的拥堵问题。题目提供了四个视频观测点的数据,需分析交通流参数随时间的变化规律,建立拥堵预警模型,并验证模型有效性。此外,还需设计合理的应急车道启用规则和算法,优化视频监控点布局,以提升决策科学性和成本效益。涉及视频数据处理、非线性动态系统建模和机器学习等技术。适合交通工程、数学、计算机科学等多个专业学生参与。需利用Python等工具进行数据处理和建模。具体问题包括统计参数变化、建立拥堵模型、验证模型有效性、设计启用规则和优化监控点布局。
903 12
【BetterBench博士】2024年中国研究生数学建模竞赛 E题:高速公路应急车道紧急启用模型 问题分析、数学模型及Python代码
|
1月前
|
Java C++ Python
【面试宝典】深入Python高级:直戳痛点的题目演示(下)
【面试宝典】深入Python高级:直戳痛点的题目演示(下)
|
1月前
|
设计模式 Unix Python
【面试宝典】深入Python高级:直戳痛点的题目演示(上)
【面试宝典】深入Python高级:直戳痛点的题目演示(上)
|
3月前
|
算法 搜索推荐 数据挖掘
【2024年华数杯全国大学生数学建模竞赛】C题:老外游中国 问题思路分析及Python代码实现
本文提供了2024年华数杯全国大学生数学建模竞赛C题“老外游中国”的解题思路分析和Python代码实现,涉及景点评分统计、城市综合评价、游玩路线规划以及特定条件下的旅游优化问题。
644 6
【2024年华数杯全国大学生数学建模竞赛】C题:老外游中国 问题思路分析及Python代码实现
|
3月前
|
机器学习/深度学习 算法 机器人
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】A题 水果采摘机器人的图像识别 Python代码解析
本文介绍了2023年第十三届APMCM亚太地区大学生数学建模竞赛A题的Python代码实现,详细阐述了水果采摘机器人图像识别问题的分析与解决策略,包括图像特征提取、数学模型建立、目标检测算法使用,以及苹果数量统计、位置估计、成熟度评估和质量估计等任务的编程实践。
90 0
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】A题 水果采摘机器人的图像识别 Python代码解析
|
Python
Python GUI tkinter 随机生成题目
说明 (1)拟设计的功能及实现思路、需要用到的知识 实现逐个显示题目,并且在点击按钮之后判断回答是否正确 实现可以统计正确率(在回答完所有题目之后) 实现指定题目的数量,指定题目的运算符号 实现将所有题目进行记录,并打印到word文档 实现将所有错误的题目进行记录,并打印到word文档 实现指定打印题目的行数和列数,并在界面进行展示 实现时刻提醒用户当前还剩下多少个题目没有解决 (2)调用库的说明 random 生成随机数要用到的库 tkinter 制作图形化界面要用到的库 docx 对word文档进行操作的库 docx.shared 里面的Pt 可以规定word文档的字体等规范
192 0
Python GUI tkinter 随机生成题目
|
3天前
|
存储 数据挖掘 开发者
Python编程入门:从零到英雄
在这篇文章中,我们将一起踏上Python编程的奇幻之旅。无论你是编程新手,还是希望拓展技能的开发者,本教程都将为你提供一条清晰的道路,引导你从基础语法走向实际应用。通过精心设计的代码示例和练习,你将学会如何用Python解决实际问题,并准备好迎接更复杂的编程挑战。让我们一起探索这个强大的语言,开启你的编程生涯吧!
|
9天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。