基于FPGA的ECG心电信号峰值检测和心率计算,包括testbench测试文件和ECG数据转换为coe文件程序

简介: 基于FPGA的ECG心电信号峰值检测和心率计算,包括testbench测试文件和ECG数据转换为coe文件程序

1.算法运行效果图预览

9ad6ee3fd51f0bcbbb2c742d8f279641_82780907_202311161611240782336554_Expires=1700122884&Signature=yO%2FncMdLACFiJN2MW8Wv5Bdl%2B40%3D&domain=8.jpeg
11f1cc9e5f541c13bcf69ea3a2cb6cf7_82780907_202311161611240720736033_Expires=1700122884&Signature=cMGY7u26uxRdpE%2BZfFdPEMvFclU%3D&domain=8.jpeg

2.算法运行软件版本
vivado2019.2

matlab2022a

3.算法理论概述
心电图(ECG)是一种广泛应用于医疗诊断的技术,用于监测心脏的电活动。随着医疗技术的发展,基于FPGA(现场可编程门阵列)的ECG信号处理系统越来越受到关注。这种系统具有高实时性、高可靠性、低功耗等优点,能够满足现代化医疗设备的需求。本文将详细介绍基于FPGA的ECG心电信号峰值检测和心率计算的方法,包括原理、公式和实现过程。

   ECG信号是一种生物电信号,反映了心脏的电活动。在ECG信号中,峰值点对应于心室除极过程中的最大电压,是分析ECG信号的重要特征之一。通过检测ECG信号的峰值点,可以确定心跳的起止时刻,从而计算心率。

   基于FPGA的ECG信号峰值检测和心率计算方法主要包括以下几个步骤:

ECG信号预处理:由于ECG信号中存在噪声和其他干扰,需要对信号进行预处理,以便后续的峰值检测和心率计算。预处理方法包括滤波、放大和去基线漂移等。
峰值检测:在预处理后的ECG信号中,通过一定的算法检测峰值点。常用的峰值检测算法包括阈值法、斜率法和最大值法等。
心率计算:通过检测到的峰值点,计算心率。常用的心率计算方法包括周期法、频率法和瞬时心率法等。
在峰值检测和心率计算过程中,涉及到的公式包括:

4c7a245bc2c1cf53f5499383a2a29c60_82780907_202311161612380079799477_Expires=1700122958&Signature=CZ%2BXN6dArhd2fU4bRvuaWhpm504%3D&domain=8.png

基于FPGA的ECG信号峰值检测和心率计算的实现过程如下:

ECG信号采集:通过ECG采集设备获取原始的ECG信号。
ECG信号预处理:对原始ECG信号进行预处理,包括滤波、放大和去基线漂移等操作,以便后续的峰值检测和心率计算。
峰值检测:根据选定的算法(如阈值法、斜率法或最大值法),在预处理后的ECG信号中检测峰值点。
心率计算:根据检测到的峰值点时间间隔和心跳周期的关系,计算心率。
数据传输和存储:将计算得到的心率数据传输给上位机或存储设备进行后续处理和分析。
系统调试和优化:根据实际需求和系统性能进行系统调试和优化,以提高系统的准确性和实时性。
基于FPGA的ECG心电信号峰值检测和心率计算方法具有高实时性、高可靠性和低功耗等优点,能够满足现代化医疗设备的需求。通过对ECG信号的预处理、峰值检测和心率计算等步骤的实现,可以实现对ECG信号的准确分析和处理。这种技术对于医疗诊断、健康监测和运动训练等领域具有广泛的应用前景。

4.部分核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2023/09/05 04:23:51
// Design Name:
// Module Name: tops
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module tops(
input i_clk,
input i_rst,
output signed[11:0]o_data,
output signed[15:0]o_pv2_1,
output signed[15:0]o_pv2_2,
output signed[15:0]o_pv2_3,
output signed[15:0]o_pv2_4,
output o_syn,
output signed[31:0]o_heartrate,
output signed[15:0]o_heartcnt
);

//调用心率数据
ECG_data ECG_data_u(
.i_clk (i_clk),
.i_rst (i_rst),
.o_data(o_data)
);

// ECG峰值检测模块find_heart_max的实例化,用于检测ECG信号的峰值信息
//ECG峰值检测
find_heart_max find_heart_max_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_lvl (16'd500), // 阈值设定为500,此处需要确认该数值的单位和范围是否正确
.i_peak ({o_data[11],o_data[11],o_data[11],o_data[11],o_data}), // 将ECG数据打包成5个11位的信号作为输入峰值信号

.o_pv2_1    (o_pv2_1), // 输出的第1峰值电压值  
.o_pv2_2    (o_pv2_2), // 输出的第2峰值电压值  
.o_pv2_3    (o_pv2_3), // 输出的第3峰值电压值  
.o_pv2_4    (o_pv2_4), // 输出的第4峰值电压值  
.o_idx_1    (), 
.o_delay_cnt(), 
.o_syn      (o_syn), // 同步信号,用于控制心率计算模块的工作时序  
.curr_state (), 
.cnten      (), 

.cnt0       (), 
.cnt1       (), 
.cnt2       (), 
.cnt3       (), 
.cnt4       (), 

.max_1      (), 
.max_2      (), 
.max_3      (), 
.max_4      ()
);

//根据峰值位置计算近似心率
//计算心率
heart_rate heart_rate_u(
.i_clk(i_clk),
.i_rst(i_rst),
.i_heart (o_syn),
.o_heartrate(o_heartrate),
.o_heartcnt (o_heartcnt)
);

endmodule

```

相关文章
|
11天前
|
数据采集 算法 测试技术
【硬件测试】基于FPGA的1024QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的1024QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集和vio在线SNR设置模块,支持不同SNR条件下的性能测试。1024QAM调制将10比特映射到复平面上的1024个星座点之一,实现高效数据传输。硬件测试结果表明,在SNR=32dB和40dB时,系统表现出良好的性能。Verilog核心程序展示了各模块的连接与功能实现。
36 7
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
6天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的4ASK调制解调通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的4ASK调制解调系统的硬件测试版本,该系统包括testbench、高斯信道模块和误码率统计模块,并新增了ILA在线数据采集和VIO在线SNR设置功能。通过VIO设置不同SNR(如15dB和25dB),实现了对系统性能的实时监测与调整。4ASK是一种通过改变载波幅度表示数据的数字调制方式,适用于多种通信场景。FPGA平台的高效性和灵活性使其成为构建高性能通信系统的理想选择。
51 17
|
5天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的16QAM调制+软解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于之前开发的16QAM调制与软解调系统,增加了硬件测试功能。该系统包含FPGA实现的16QAM调制、软解调、高斯信道、误码率统计模块,并新增了ILA在线数据采集和VIO在线SNR设置模块。通过硬件测试,验证了不同SNR条件下的系统性能。16QAM软解调通过比较接收信号采样值与16个调制点的距离,选择最近的调制点来恢复原始数据。核心Verilog代码实现了整个系统的功能,包括SNR设置、信号处理及误码率统计。硬件测试结果表明系统在不同SNR下表现良好,详细操作步骤可参考配套视频。
39 13
|
9天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的4FSK调制解调通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于之前的文章《基于FPGA的4FSK调制解调系统》,增加了ILA在线数据采集模块和VIO在线SNR设置模块,实现了硬件测试版本。通过VIO设置不同SNR(如10dB和20dB),并展示了ILA采集的数据结果。四频移键控(4FSK)是一种数字调制方法,利用四个不同频率传输二进制数据,具有较高的频带利用率和抗干扰性能。输入的二进制数据分为两组,每组两个比特,对应四个频率f1、f2、f3、f4,分别代表二进制组合00、01、10、11。调制过程中选择相应频率输出,并进行幅度调制以增强抗干扰能力。接收端通过带通滤波器提取信号并还原为原始二进制数据。
31 7
|
13天前
|
数据采集 算法 数据处理
【硬件测试】基于FPGA的256QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的256QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集和vio在线SNR设置模块,支持不同信噪比(如30dB和40dB)的仿真测试,并提供配套操作视频。256QAM调制方案每个符号携带8比特信息,通过复数值星座图映射实现高效传输。Verilog代码展示了核心模块设计,包括SNR设置、数据处理和ILA测试分析,确保系统在实际硬件环境中的稳定性和性能。
17 2
|
17天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的16QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的16QAM基带通信系统硬件测试版本。该系统在仿真基础上增加了ILA在线数据采集和VIO在线SNR设置模块,支持不同信噪比(如15dB、25dB)的测试。16QAM是一种正交幅度调制方式,通过两路4ASK信号叠加实现,每个符号包含4比特信息。系统采用正交调幅法生成16QAM信号,并通过DAC转换为模拟信号。解调时使用正交相干解调,经低通滤波器恢复电平信号。开发板内完成发射与接收,无需定时同步模块。代码可移植至其他开发板,具体步骤见配套文档。
26 2
|
23天前
|
数据采集 算法 测试技术
【硬件测试】基于FPGA的2ASK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍基于FPGA的2ASK调制解调系统,涵盖仿真效果、理论知识、Verilog核心程序及开发板使用说明。系统包含testbench、高斯信道模块和误码率统计模块,支持不同SNR设置。硬件测试版本增加了ILA在线数据采集和VIO在线SNR设置功能。2ASK调制通过改变载波振幅传输二进制信号,FPGA实现包括系统设计、Verilog编码、仿真测试和硬件部署。详细操作步骤见配套视频,代码适用于多种开发板,提供移植方法。
30 1
|
14天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的64QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的64QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集模块和vio在线SNR设置模块,支持不同SNR条件下的仿真与测试。通过设置SNR为25dB和30dB进行测试,验证了系统的可行性和性能。此外,本文详细阐述了64QAM调制解调的工作原理,包括信号生成、调制、解调及误码率测试等环节,并提供了Verilog核心程序代码。
19 0
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
136 74

热门文章

最新文章