【AI Business Model】人工智能的定义 | 了解 AI 的历史 | 简单理解什么是 “图灵测试“

简介: 【AI Business Model】人工智能的定义 | 了解 AI 的历史 | 简单理解什么是 “图灵测试“

 

💭 写在前面:本章我们将讲解工业革命的定义、人工智能的定义以及第四次工业革命的特点。


0x00 人工智能的定义

① WIKI 百科定义:机器智能,技术使机器能够模拟人类的学习能力和问题解决能力。

② 在计算机领域的定义:

  • 为了实现某一目标,感知当前情况。
  • 决定行动以最大程度地实现该目标的代理,弱人工智能。

③ 来自维基百科的AGI(人工通用智能)定义:

  • 机器能够执行人类进行的任何智力任务的智能。
  • AI 研究的目标
  • 科幻作家的主题
  • 强人工智能 (Strong AI)

人工智能(Artificial Intelligence,简称AI)是一种计算机科学领域,它致力于创建能够模拟人类智能和学习能力的计算机系统。这意味着AI系统可以处理信息、理解语言、解决问题、做出决策和执行任务,这些任务通常需要人类智能才能完成。人工智能的核心目标是使计算机系统能够模仿和模拟人类的感知、推理、学习和适应能力,从而使它们 能够自主地执行各种任务,而无需人类的干预。

0x01 AI 的历史

🚩 简单概括:

  • 1943年:早期起步 —— McCulloch & Pitts:脑的布尔电路模型
  • 1950年:图灵 —— 图灵的《计算机与智能》
  • 1956年:人工智能诞生 —— Dartmouth 会议:采用 "Artificial Intelligence" 名称

20世纪初:计算机科学的奠基人,如阿兰·图灵(Alan Turing),提出了计算理论和机器智能的一些基本概念。图灵的著名图灵测试(Turing Test)被认为是评估机器智能的标准之一。

20世纪50年代:在这个时期,AI研究的先驱们开始开发可以模拟人类思维的计算机程序。代表性的项目包括Dartmouth Workshop,它被认为是首个AI会议,以及John McCarthy创建的LISP编程语言,LISP被广泛用于AI研究。

20世纪60年代和70年代:这个时期是AI的黄金时代,被称为“AI的第一次浪潮”。研究人员开发了各种AI程序,包括专家系统,这些系统可以模拟人类专家的知识和推理能力。

20世纪80年代和90年代:AI研究遇到了一些挫折,称为“AI的寒冬”。许多过于乐观的预期未能实现,导致资金和兴趣流失。然而,一些子领域如机器学习和神经网络研究仍在继续发展。

21世纪初:机器学习和数据驱动的方法重新引领了AI研究的潮流。大数据的可用性和计算能力的提升使得深度学习和神经网络等技术取得突破性进展。这一时期也见证了计算机视觉、自然语言处理和语音识别等领域的显著进步。

0x02 图灵测试

图灵测试(The Turing test)由艾伦·麦席森·图灵提出,指测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。 进行多次测试后,如果机器让平均每个参与者做出超过30%的误判,那么这台机器就通过了测试,并被认为具有人类智能。图灵测试一词来源于计算机科学和密码学的先驱艾伦·麦席森·图灵写于1950年的一篇论文《计算机器与智能》,其中30%是图灵对2000年时的机器思考能力的一个预测,我们已远远落后于这个预测。简单来说就是 ——

通过使用键盘进行 5 分钟的人机对话,如果 超过 30% 的测试人员将计算机误认为是人类,则认为图灵测试通过。

2014 年 6 月,65岁的图灵测试成功通过:

BBC News 2014, June 9:

1995 - 人工智能作为科学,学习、推理、知识表示的整合,人工智能方法在视觉、语言、数据挖掘等领域的应用。2009-2012 - 深度神经网络 (Deep Neural Network)。2016 - AlphaGo在与李世石的比赛中赢得了5场比赛中的4场。强化学习 + 深度神经网络 (Reinforcement Learning + Deep Neural Network。2018 - 中英翻译 。机器翻译,质量接近人类水平 。将中文新闻故事翻译成英文 。2018 - 前列腺癌分级 。深度神经网络:总体准确率达到70% 。美国认证的一般病理学专家:61%准确率。

📌 [ 笔者 ]   王亦优
📃 [ 更新 ]   2022.9.8
❌ [ 勘误 ]   /* 暂无 */
📜 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,
              本人也很想知道这些错误,恳望读者批评指正!

📜 参考资料 

相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
人工智能与医疗健康:AI如何改变生命科学
【10月更文挑战第31天】人工智能(AI)正深刻改变医疗健康和生命科学领域。本文探讨AI在蛋白质结构预测、基因编辑、医学影像诊断和疾病预测等方面的应用,及其对科研进程、医疗创新、服务效率和跨学科融合的深远影响。尽管面临数据隐私和伦理等挑战,AI仍有望为医疗健康带来革命性变革。
66 30
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
1分钟认识:人工智能claude AI _详解CLAUDE在国内怎么使用
Claude AI 是 Anthropic 开发的先进对话式 AI 模型,以信息论之父克劳德·香农命名,体现了其在信息处理和生成方面的卓越能力
|
20天前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能与未来医疗:AI技术如何重塑医疗健康领域###
【10月更文挑战第21天】 一场由AI驱动的医疗革命正在悄然发生,它以前所未有的速度和深度改变着我们对于疾病预防、诊断、治疗及健康管理的认知。本文探讨了AI在医疗领域的多维度应用,包括精准医疗、药物研发加速、远程医疗普及以及患者个性化治疗体验的提升,揭示了这场技术变革背后的深远意义与挑战。 ###
47 6
|
21天前
|
人工智能 自动驾驶 数据安全/隐私保护
人工智能的伦理困境:我们如何确保AI的道德发展?
【10月更文挑战第21天】随着人工智能(AI)技术的飞速发展,其在各行各业的应用日益广泛,从而引发了关于AI伦理和道德问题的讨论。本文将探讨AI伦理的核心问题,分析当前面临的挑战,并提出确保AI道德发展的建议措施。
|
21天前
|
人工智能 搜索推荐 安全
人工智能与未来社会:探索AI在教育领域的革命性影响
本文深入探讨了人工智能(AI)技术在教育领域的潜在影响和变革。通过分析AI如何个性化学习路径、提高教学效率以及促进教育资源的公平分配,我们揭示了AI技术对教育模式的重塑力量。文章还讨论了实施AI教育所面临的挑战,包括数据隐私、伦理问题及技术普及障碍,并提出了相应的解决策略。通过具体案例分析,本文旨在启发读者思考AI如何助力构建更加智能、高效和包容的教育生态系统。
|
14天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。
|
30天前
|
机器学习/深度学习 人工智能 数据可视化
深度学习之可解释人工智能(Explainable AI,XAI)
可解释人工智能(XAI)是一个旨在使AI决策过程透明和可理解的研究领域。随着AI和机器学习技术在多个行业中的应用变得越来越广泛,其决策过程的透明度和可解释性变得极其重要。
46 0
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。

热门文章

最新文章