三、降维方法
常见的降维方法有主成分分析、线性判别分析、等距映射、局部线性嵌入、拉普拉斯特征映射、局部保留投影、MDS多维缩放、流行学习。
1.线性判别分析(LDA)
线性判别分析(Linear Discriminant Analysis,LDA)是一种经典的降维方法。和主成分分析PCA不考虑样本类别输出的无监督降维技术不同,LDA是一种监督学习的降维技术,数据集的每个样本有类别输出。
LDA分类思想简单总结如下:
- 多维空间中,数据处理分类问题较为复杂,LDA算法将多维空间中的数据投影到一条直线上,将d维数据转化成1维数据进行处理。
- 对于训练数据,设法将多维数据投影到一条直线上,同类数据的投影点尽可能接近,异类数据点尽可能远离。
- 对数据进行分类时,将其投影到同样的这条直线上,再根据投影点的位置来确定样本的类别。
如果用一句话概括LDA思想,即“投影后类内方差最小,类间方差最大”。
假设有红、蓝两类数据,这些数据特征均为二维,如下图所示。我们的目标是将这些数据投影到一维,让每一类相近的数据的投影点尽可能接近,不同类别数据尽可能远,即图中红色和蓝色数据中心之间的距离尽可能大。
左图和右图是两种不同的投影方式。
- 左图思路:让不同类别的平均点距离最远的投影方式。
- 右图思路:让同类别的数据挨得最近的投影方式。
从上图直观看出,右图红色数据和蓝色数据在各自的区域来说相对集中,根据数据分布直方图也可看出,所以右图的投影效果好于左图,左图中间直方图部分有明显交集。
以上例子是基于数据是二维的,分类后的投影是一条直线。如果原始数据是多维的,则投影后的分类面是一低维的超平面。
优缺点
2.主成分分析(PCA)(目标:最大化投影方差)
- PCA就是将高维的数据通过线性变换投影到低维空间上去。
- 投影思想:找出最能够代表原始数据的投影方法。被PCA降掉的那些维度只能是那些噪声或是冗余的数据。
- 去冗余:去除可以被其他向量代表的线性相关向量,这部分信息量是多余的。
- 去噪声,去除较小特征值对应的特征向量,特征值的大小反映了变换后在特征向量方向上变换的幅度,幅度越大,说明这个方向上的元素差异也越大,要保留。
- 对角化矩阵,寻找极大线性无关组,保留较大的特征值,去除较小特征值,组成一个投影矩阵,对原始样本矩阵进行投影,得到降维后的新样本矩阵。
- 完成PCA的关键是——协方差矩阵。协方差矩阵,能同时表现不同维度间的相关性以及各个维度上的方差。协方差矩阵度量的是维度与维度之间的关系,而非样本与样本之间。
- 之所以对角化,因为对角化之后非对角上的元素都是0,达到去噪声的目的。对角化后的协方差矩阵,对角线上较小的新方差对应的就是那些该去掉的维度。所以我们只取那些含有较大能量(特征值)的维度,其余的就舍掉,即去冗余。
图解PCA
PCA可解决训练数据中存在数据特征过多或特征累赘的问题。核心思想是将m维特征映射到n维(n < m),这n维形成主元,是重构出来最能代表原始数据的正交特征。
假设数据集是m个n维, (x(1),x(2),⋯,x(m)) 。如果n=2,需要降维到n'=1,现在想找到某一维度方向代表这两个维度的数据。下图有 u1 , u2 两个向量方向,但是哪个向量才是我们所想要的,可以更好代表原始数据集的呢?
从图可看出, u1 比 u2 好,为什么呢?有以下两个主要评价指标:
- 样本点到这个直线的距离足够近。
- 样本点在这个直线上的投影能尽可能的分开。
如果我们需要降维的目标维数是其他任意维,则:
- 样本点到这个超平面的距离足够近。
- 样本点在这个超平面上的投影能尽可能的分开。
可以通过核映射对PCA 进行扩展得到核主成分分析( KPCA ) , 也可以通过流形映射的障维方法,比如等距映射、局部结性嵌入、拉普拉斯特征映射等,对一些PCA 效果不好的复杂数据集进行非线性降维操作。
优缺点(各主成分之间正交)
3.比较这两种方法
- 多重共线性和预测变量之间相互关联。多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯。
- 高维空间本身具有稀疏性。一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有2%。
- 过多的变量,对查找规律造成冗余麻烦。
- 仅在变量层面上分析可能会忽略变量之间的潜在联系。例如几个预测变量可能落入仅反映数据某一方面特征的一个组内。
降维的目的:
- 减少预测变量的个数。
- 确保这些变量是相互独立的。
- 提供一个框架来解释结果。相关特征,特别是重要特征更能在数据中明确的显示出来;如果只有两维或者三维的话,更便于可视化展示。
- 数据在低维下更容易处理、更容易使用。
- 去除数据噪声。
- 降低算法运算开销。
LDA和PCA区别
四、机器学习评估方法
混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用n行n列的矩阵形式来表示。具体评价指标有总体精度、制图精度、用户精度等,这些精度指标从不同的侧面反映了图像分类的精度。下图为混淆矩阵
1.准确率(Accuracy)
准确率(Accuracy)。顾名思义,就是所有的预测正确(正类负类)的占总的比重。
准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷。比如,当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率。所以,当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素。
2.精确率(Precision)
精确率(Precision),查准率。是指分类正确的正样本个数占分类器判定为正样本的样本个数的比例。
3.召回率(Recall)
召回率(Recall),查全率。是指分类正确的正样本个数占真正的正样本个数的比例。
精准率与召回率相互制约、相互平衡
例题:假设二元分类的输出是概率值,一般设定输出概率大于或等于 0.5,则预测为正类;若输出概率小于 0.5,则预测为负类。那么,如果将阈值 0.5 提高,则准确率(Precision)增加或者不变和召回率(Recall)减小或者不变,反之。
为了综合评估一个排序模型的好坏,不仅要看模型在不同 Top N下的Precision@N和Recall@N,而且最好绘制出模型的P-R(Precision- Recall)曲线。这里简单介绍一下P-R曲线的绘制方法。
P-R曲线的横轴是召回率,纵轴是精确率。对于一个排序模型来说,其P-R曲线上的一个点代表着,在某一阈值下,模型将大于该阈值的结果判定为正样本, 小于该阈值的结果判定为负样本,此时返回结果对应的召回率和精确率。整条P-R 曲线是通过将阈值从高到低移动而生成的。下图是P-R曲线样例图,其中实线代表模型A的P-R曲线,虚线代表模型B的P-R曲线。原点附近代表当阈值最大时模型的精确率和召回率。
由图可见,当召回率接近于0时,模型A的精确率为0.9,模型B的精确率是1, 这说明模型B得分前几位的样本全部是真正的正样本,而模型A即使得分最高的几个样本也存在预测错误的情况。并且,随着召回率的增加,精确率整体呈下降趋势。但是,当召回率为1时,模型A的精确率反而超过了模型B。这充分说明,只用某个点对应的精确率和召回率是不能全面地衡量模型的性能,只有通过P-R曲线的整体表现,才能够对模型进行更为全面的评估。
4.F1值(H-mean值)
F1值(H-mean值)。越大越好,是精准率和召回率的调和平均值。
5.ROC曲线
ROC曲线。接收者操作特征曲线(receiver operating characteristic curve),是反映敏感性和特异性连续变量的综合指标,ROC曲线上每个点反映着对同一信号刺激的感受性。下图是ROC曲线例子。
横坐标:1-Specificity,伪正类率(False positive rate,FPR,FPR=FP/(FP+TN)),预测为正但实际为负的样本占所有负例样本的比例;
纵坐标:Sensitivity,真正类率(True positive rate,TPR,TPR=TP/(TP+FN)),预测为正且实际为正的样本占所有正例样本的比例。
真正的理想情况,TPR应接近1,FPR接近0,即图中的(0,1)点。ROC曲线越靠拢(0,1)点,越偏离45度对角线越好。
ROC曲线与P-R曲线有什么特点?
相比P-R曲线, ROC曲线有一个特点,当正负样本的分布发生变化时,ROC曲线的形状能够基本保持不变,而P-R曲线的形状一般会发生较剧烈的变化。
这个特点让ROC曲线能够尽量降低不同测试集带来的干扰,更加客观地衡量模型本身的性能。这有什么实际意义呢?在很多实际问题中, 正负样本数量往往很不均衡。比如,计算广告领域经常涉及转化率模型,正样本的数量往往是负样本数量的1/1000 甚至1/10000 。若选择不同的测试集,P-R曲线的变化就会非常大,而ROC曲线则能够更加稳定地反映模型本身的好坏。所以,ROC曲线的适用场景更多,被广泛用于排序、推荐、广告等领域。但需要注意的是,选择P-R曲线还是ROC曲线是因实际问题而异的,如果研究者希望更多地看到模型在特定数据集上的表现,P-R 曲线则能够更直观地反映其性能。
AUC值
AUC (Area Under Curve) 被定义为ROC曲线下的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围一般在0.5和1之间。使用AUC值作为评价标准是因为很多时候ROC曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应AUC更大的分类器效果更好。
从AUC判断分类器(预测模型)优劣的标准:
- AUC = 1,是完美分类器,采用这个预测模型时,存在至少一个阈值能得出完美预测。绝大多数预测的场合,不存在完美分类器。
- 0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
- AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。
- AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。
一句话来说,AUC值越大的分类器,正确率越高。
6.余弦距离和欧式距离
余弦距离:
欧式距离:在数学中,欧几里得距离或欧几里得度量是欧几里得空间中两点间“普通”(即直线)距离。
对于两个向量A和B,余弦距离关注的是向量之间的角度关系,并不关心它们的绝对大小,其取值范围是[−1,1]。当一对文本相似度的长度差距很大、但内容相近时,如果使用词频或词向量作为特征,它们在特征空间中的的欧氏距离通常很大;而如果使用余弦相似度的话,它们之间的夹角可能很小,因而相似度高。此外,在文本、图像、 视频等领域,研究的对象的特征维度往往很高,余弦相似度在高维情况下依然保持“相同时为1,正交时为0,相反时为−1”的性质,而欧氏距离的数值则受维度的影响,范围不固定,并且含义也比较模糊。
在机器学习领域,被俗称为距离,却不满足三条距离公理的不仅仅有余弦距离,还有KL 距离( Kullback-Leibler Divergence ),也叫作相对熵,它常用于计算两个分布之间的差异,但不满足对称性和三角不等式。
7.A/B测试
AB测试是为Web或App界面或流程制作两个(A/B)或多个(A/B/n)版本,在同一时间维度,分别让组成成分相同(相似)的访客群组(目标人群)随机的访问这些版本,收集各群组的用户体验数据和业务数据,最后分析、评估出最好版本,正式采用。
8.模型评估方法(划分训练集和测试集的方法)
- Holdout检验(留出法)
Holdout 检验是最简单也是最直接的验证方法,它将原始的样本集合随机划分成训练集和验证集两部分。比方说,对于一个点击率预测模型,我们把样本按照 70%~30% 的比例分成两部分,70% 的样本用于模型训练;30% 的样本用于模型验证,包括绘制ROC曲线、计算精确率和召回率等指标来评估模型性能。
Holdout 检验的缺点很明显,即在验证集上计算出来的最后评估指标与原始分组有很大关系。为了消除随机性,研究者们引入了“交叉检验”的思想。
- 交叉检验(增大k会导致交叉验证结果的置信度增加)
k-fold交叉验证:首先将全部样本划分成k个大小相等的样本子集;依次遍历这k个子集,每次把当前子集作为验证集,其余所有子集作为训练集,进行模型的训练和评估;最后把k次评估指标的平均值作为最终的评估指标。在实际实验中,k经常取10。
k=n:留一验证,每次留下1个样本作为验证集,其余所有样本作为测试集。样本总数为n ,依次对n个样本进行遍历,进行n次验证,再将评估指标求平均值得到最终的评估指标。
- 自助法
不管是Holdout检验还是交叉检验,都是基于划分训练集和测试集的方法进行模型评估的。然而,当样本规模比较小时,将样本集进行划分会让训练集进一步减小,这可能会影响模型训练效果。有没有能维持训练集样本规模的验证方法呢?自助法可以比较好地解决这个问题。
自助法是基于自助采样法的检验方法。对于总数为n的样本集合,进行n次有放回的随机抽样,得到大小为n的训练集。n次采样过程中,有的样本会被重复采样,有的样本没有被抽出过,将这些没有被抽出的样本作为验证集,进行模型验证,这就是自助法的验证过程。
9.超参数调优
为了进行超参数调优,我们一般会采用网格搜索、随机搜索、贝叶斯优化等算法。在具体介绍算法之前,需要明确超参数搜索算法一般包括哪几个要素。一是目标函数,即算法需要最大化/最小化的目标;二是搜索范围,一般通过上限和下限来确定;三是算法的其他参数,如搜索步长。
- 网格搜索,可能是最简单、应用最广泛的超参数搜索算法,它通过查找搜索范围内的所有的点来确定最优值。如果采用较大的搜索范围以及较小的步长,网格搜索有很大概率找到全局最优值。然而,这种搜索方案十分消耗计算资源和时间,特别是需要调优的超参数比较多的时候。因此,在实际应用中,网格搜索法一般会先使用较广的搜索范围和较大的步长,来寻找全局最优值可能的位置;然后会逐渐缩小搜索范围和步长,来寻找更精确的最优值。这种操作方案可以降低所需的时间和计算量,但由于目标函数一般是非凸的,所以很可能会错过全局最优值。
- 随机搜索,随机搜索的思想与网格搜索比较相似,只是不再测试上界和下界之间的所有值,而是在搜索范围中随机选取样本点。它的理论依据是,如果样本点集足够大,那么通过随机采样也能大概率地找到全局最优值,或其近似值。随机搜索一般会比网格搜索要快一些,但是和网格搜索的快速版一样,它的结果也是没法保证的。
- 贝叶斯优化算法,贝叶斯优化算法在寻找最优最值参数时,采用了与网格搜索、随机搜索完全不同的方法。网格搜索和随机搜索在测试一个新点时,会忽略前一个点的信息; 而贝叶斯优化算法则充分利用了之前的信息。贝叶斯优化算法通过对目标函数形状进行学习,找到使目标函数向全局最优值提升的参数。
10.过拟合和欠拟合(偏差和方差)
泛化能力(generalization ability)是指机器学习算法对新鲜样本的适应能力。
- 偏差(Bias)
- 反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精度
- 方差(Variance)
- 反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性
模型误差=偏差(Bias)+方差(Variance)+不可避免的误差
过拟合是指模型对于训练数据拟合呈过当的情况,反映到评估指标上,就是模型在训练集上的表现很好,但在测试集和新数据上的表现较差。欠拟合指的是模型在训练和预测时表现都不好的情况。下图形象地描述了过拟合和欠拟合的区别。
防止过拟合(过拟合是高方差):
- 从数据入手,获得更多的训练数据。(使用更多的训练数据是解决过拟合问题最高效的手段,因为更多的样本能够让模型学习到更多更高效的特征,减小噪声的影响)
- 增加样本数
- 降低模型复杂度。
- 正则化方法,给模型的参数加上一定的正则约束。
- 集成学习方法,集成学习是把多个模型集成在一起。
防止欠拟合(欠拟合是高偏差):
- 添加新特征。
- 增加模型复杂度。
- 减小正则化系数。
偏差和方差通常都是矛盾的。
- 降低偏差,会提高方差。
- 降低方差,会提高偏差。
机器学习算法的主要挑战,来自于方差!
例题:存在两种文本分类算法——A和B,对于同一组样本数据,A和B识别出了同样数量的正类数据,但A比B识别出了更多的正确的正类数据,则针对两种算法的查准率P和查全率R,则(P(A)>P(B)、R(A)>R(B) )。