如何使用NLP库解析Python中的文本

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 如何使用NLP库解析Python中的文本

Python是一种强大的面向对象的编程(object-oriented programming,OOP)语言,在人工智能领域有着广泛的用途。正是鉴于其实用性,以Google为首的大型科技公司,已经对其开发了Tensorflow等代码库,帮助人们利用强大的机器学习算法与模型,来实现各种应用目的,其中不乏各种“手语”解析器、摩托车头盔检测器、以及各种物品识别器。

而NLP(natural language processing,自然语言处理)是所有与理解和操纵自然语言相关的人工智能活动的总称。在Python中,就有一种被称为Transformers的机器学习模型,可被用于获取文本,并将文本分解为不同的组件,进而识别出其中的重要部分。接下来,我们就来讨论一下作为深度学习模型的Transformer,是如何解析文本的。

一、如何使用Transformer库在Python中解析文本?

在开始之前,先需要拥有一个Google帐户。为了省去在自己的计算机上安装Python、其依赖项、以及IDE(integrated development environment,集成开发环境)的麻烦,我们使用免费的云服务环境-Google Colab笔记本,以便与不同的人使用Python进行协作。同时,由于AI代码库本身体量较大,并且具有较多的依赖项,因此云端环境的使用,可以有效地节省它们对于硬盘空间的占用。

1.安装所需的库

首先,我们需要安装如下四个代码库。打开Colab笔记本,并在第一个代码单元格中输入以下内容:

!pip install transformers

!pip install torch

!pip install sentencepiece

!pip install newspaper3k

在继续之前,让我们稍微了解一下这些命令。如你所知:

  • “Transformers”是可被用于解析文本的深度学习模型。
  • “Torch”提供了深度学习的算法。
  • “Sentencepeice”可被用于“标记化”(组件分解)文本。
  • “Newspaper3k”是一个网络抓取库,可用于从互联网导入文章(文字内容)。

此时,你的屏幕会显示如下内容:

2.导入文章

为了导入文章,你必须提供其对应的URL。接着,你需要输入如下命令,来下载并解析文章,以便我们稍后对其进行进一步的标记。

在完成后,我们将进入第3步。

3.标记文章

我们需要从转换库中,导入自动分词器,然后使用T5模型(T5是一种机器学习模型),可用于文本到文本(text-to-text)的转换(在此我们可用于解析),进而生成解析的文本。下图展示了需要为此效果输入的代码。

4.解析文章

为了解析这篇文章,你需要创建一个特定的函数。此函数能够接受已标记的文章,并且单独解析每个句子。然后,在输出之前,它会将各个句子重新连接到一起。

下图展示了已解析文本的输出:

你可以手动将其复制到文本文件中,以增强可读性。

这便是使用NLP库解析Python中文本的一种方式。不过,这是一种相当复杂且繁琐的方式,尤其是对于那些不熟悉AI和Python的人来说,更是如此。此时,你一定会想到,是否有一些在线解析工具,来达到该目的呢?

二、可用于在线解析的免费工具

1.Prepostseo

Prepostseo提供了可用于各种目的且非常实用的解析工具。由于可以被免费使用,因此你无需注册任何类型的帐户,即可流畅地开始使用它。

使用该工具时,你可以免费地采用如下三种模式:

  • 简单模式
  • 高级模式
  • 流畅模式

其中,在简单模式下,该工具只会进行一些简单的同义化,即:多个词会被一些同义词所代替。

而高级模式改变的不仅仅是单词和解析的结果。如果你不喜欢其默认给出的结果,则可以查看它的可修改之处,并用其他的同义词替换它。

流利模式不仅会改变单词,而且会改变短语、句子结构、以及语气。但是,它并不提供编辑输出的选项。

可见,流畅模式和高级模式是更为有效的模式。若想导入定制的内容,你可以上传待解析的文档,或者直接将文本复制粘贴到输入字段中,并在解析过程完成后,再下载其输出。

该工具的唯一缺点是会有广告在其网页上。

2.Linguix

Linguix是另一个无需注册即可使用的免费解析器。由于其网页上并没有任何广告,因此它对于用户来说十分友好。

虽然Linguix没能提供多种模式,但是当你在解析一个句子时,会得到多个建议,而非仅仅一条。鉴于所有建议都有可能对给定的文本产生不同更改,你可以选择其中最适合的一个。

该工具的操作方法比较简单,你只需要在输入框中写入待解析的文本,然后以突出显示的方式选择它,便可逐句获得相应的弹出建议。

该工具的唯一缺点是:你一次只能解析五个句子。

3.Paraphraser

Paraphraser.io也是一个拥有许多内容优化工具的在线工具包。顾名思义,它主要针对的是解析领域。

该工具同样无需注册便可被免费使用。不过,与前面提到的Prepostseo类似,你在使用过程中,也可能会被其广告所困扰。目前,它提供了两种免费模式:标准模式和流畅模式。其中,标准模式只会使用同义词去替换部分单词,并保持整体句子的结构不变。而流利模式除了会替换单词和短语,还会改变句子的结构,进而让文本更具有可读性。

除了广告,该工具的另一个缺点是:你一次性最多只能解析500个单词。

三、小结

综上所述,在使用NLP库解析Python中的文本时,我们完全可以利用人工智能和深度学习的各种模型,来实现转换。你既可以使用Google Colab的强大云服务功能,使用Transformer库来完成此类繁重的任务;又可以选用各种在线解析工具的各种模式,以不同的方式重写文本。而且,此类工具大多是免费且无需注册。

多看看优秀的工具

太空电梯、MOSS、ChatGPT等,都预兆着2023年注定不会是平凡的一年。任何新的技术都值得推敲,我们应要有这种敏感性。

这几年隐约碰过低代码,目前比较热门,很多大厂都相继加入。

低代码平台概念:通过自动代码生成和可视化编程,只需要少量代码,即可快速搭建各种应用。

到底啥是低代码,在我看来就是拖拉拽,呼呼呼,一通操作,搞出一套能跑的系统,前端,后端,数据库,一把完成。当然这可能是最终目标。

链接:www.jnpfsoft.com/?csdn,如果你感兴趣,也体验一下。

JNPF的优势就在于它能生成前后台代码,提供了极大的灵活性,能够创建更复杂、定制化的应用。它的架构设计也让开发者无需担心底层技术细节,能够专注于应用逻辑和用户体验的开发。

相关文章
|
1天前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
1天前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
7天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
深度解析Recraft V3:突破文本渲染限制,文生图黑马是怎样炼成的?
Recraft V3模型在文本生成图像(Text-to-Image)领域取得重大突破,通过创新的"Bridging Text Spotting"方法,解决了传统方法中误差累积和性能不佳的问题。该模型采用独立训练的检测器和识别器,并引入Bridge和Adapter机制,确保高质量图像生成。Recraft V3在多个数据集上表现优异,如Total-Text准确率达83.3%,ICDAR 2015达89.5%。其应用前景广泛,涵盖广告设计、教育和娱乐等领域,为文生图技术的实际应用提供了新可能。
92 27
|
25天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
28天前
|
运维 Shell 数据库
Python执行Shell命令并获取结果:深入解析与实战
通过以上内容,开发者可以在实际项目中灵活应用Python执行Shell命令,实现各种自动化任务,提高开发和运维效率。
56 20
|
1月前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
89 3
|
2月前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
2月前
|
数据挖掘 vr&ar C++
让UE自动运行Python脚本:实现与实例解析
本文介绍如何配置Unreal Engine(UE)以自动运行Python脚本,提高开发效率。通过安装Python、配置UE环境及使用第三方插件,实现Python与UE的集成。结合蓝图和C++示例,展示自动化任务处理、关卡生成及数据分析等应用场景。
178 5
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
秒级响应 + 99.9%准确率:法律行业文本比对技术解析
本工具基于先进AI技术,采用自然语言处理和语义匹配算法,支持PDF、Word等格式,实现法律文本的智能化比对。具备高精度语义匹配、多格式兼容、高性能架构及智能化标注与可视化等特点,有效解决文本复杂性和法规更新难题,提升法律行业工作效率。

热门文章

最新文章

推荐镜像

更多