阿里云kubernetes(ACK)pod异常问题分析辅助工具-pod生命周期及事件可观测一览图

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 阿里云kubernetes(ACK)pod异常问题分析辅助工具-pod生命周期及事件可观测一览图

1. 作者

muyuan.y@alibaba-inc.com

yufeng.s@alibaba-inc.com

https://github.com/mYu4N/bpftrace/blob/main/mypod-lifecycle.py

2. 核心痛点

  1. 成本原因未开启“Pod事件监控”
  2. 开启,但因种种意外导致数据未上报至SLS
  3. 排查问题时,需要人肉分析日志和对应时间点以及先后关系,从而带来的大量额外时间开销和pod事件错漏问题

3. ACK官网效果

image.png

4. 辅助工具最终效果

4.1. 使用方法

image.png

4.2. 功能细节简述

  1. 分析离线日志,结合专业的k8s专家问题排查经验,根据k8s pod的离线日志抓取、检测特定的pod event
  2. 根据配置文件的event等级、args参数的pod名称对数据进行过滤用以对不同pod做不同维度和等级的分析
  3. pod event数据默认按照秒聚合展示在时间轴两侧,并根据event等级显示不同的颜色以展示重要性
  4. pod生命周期会以svg的格式保存至本地用于离线分析或技术交流
  5. svg本地图片将会默认注释并保存整个生命周期内,某一秒因为事件太多而缩略展示的pod event完整始末。
  6. matplotlib绘图控件click hook支持点击显示某一时刻所有pod event的细节信息
  7. matplotlib绘图控件slider hook支持拖拽时间轴以观察某一端时间的pod event,避免因为event太多,事件不够导致的图像紧凑
  8. matplotlib绘图控件支持拖拽时间轴到最左侧以展示整个pod 生命周期总览

4.3. svg本地图片效果

image.png

4.4. matplotlib交互控件效果

image.png

5. 源码

#author muyuan.y yufeng.s# python3 mypod-lifecycle.py --podname jpprod-oversea-user-message-server-0 --logfile messages --eventlevel Info,Normal,Warning,Error,FatalimportargparsefromtypingimportListimportmatplotlib.pyplotaspltimportnumpyasnpimportreimportdatetimeimportpandasaspdfromcollectionsimportCounterfrommatplotlib.backend_basesimportPickEventimportmathimportloggingfrommatplotlib.widgetsimportSliderplt.rcParams['font.sans-serif'] = ['SimHei', 'Songti SC', 'STFangsong']
plt.rcParams['axes.unicode_minus'] =Falseparser=argparse.ArgumentParser(description="display pod lifecycle")
parser.add_argument("--podname", default=None, type=str, help="name of pod, default=None")
parser.add_argument("--logfile", default=None, type=str, help="log file path of pod, default=None")
parser.add_argument("--eventlevel", default="Normal,Warning,Error,Fatal",
type=str,
help="event level configure in POD_EVENT_CONFIG::level_desc, default=Normal,Warning,Error,Fatal")
parser.add_argument("--loggerlevel", default="INFO", type=str, help="script runtime logger level, default=INFO")
args=parser.parse_args()
LOG_LEVEL_MAP= {
"DEBUG": logging.DEBUG,
"INFO": logging.INFO,
"ERROR": logging.ERROR,
"WARNING": logging.WARNING}
classMyLogger:
def__init__(self, log_level=LOG_LEVEL_MAP.get(args.loggerlevel)):
self.logger=logging.getLogger(__name__)
self.logger.setLevel(log_level)
console_handler=logging.StreamHandler()
console_handler.setLevel(log_level)
formatter=logging.Formatter('[%(asctime)s] - %(name)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
self.logger.addHandler(console_handler)
definfo(self, message):
self.logger.info(message)
deferror(self, message):
self.logger.error(message)
defdebug(self, message):
self.logger.debug(message)
defwarning(self, msg):
self.logger.warning(msg)
logger=MyLogger()
# 标签描述默认显示如下level中等级最高的颜色和level描述LEVEL_MAP= {
'Info': 0,
'Normal': 1,
'Warning': 2,
'Error': 3,
'Fatal': 4}
# 不同level的显示颜色mappingCOLOR_MAP= {
'Info': 'whitesmoke',  # 灰色'Normal': 'lightgreen',  # 亮绿色'Warning': 'darkorange',  # 橙黄色'Error': 'red',
'Fatal': 'darkred'}
# alias是展示名称,如果不写默认使用log里匹配的keyPOD_EVENT_CONFIG= {
'Container started': {
'level_desc': "Normal"    },
'Created container': {
'bbox_color_show': 'lightgreen',
'level_desc': "Normal"    },
'Started container': {
'bbox_color_show': 'lightgreen',
'level_desc': "Normal"    },
'SyncLoop ADD': {
'alias': 'ADD POD',
'level_desc': "Normal"    },
'SyncLoop UPDATE': {
'alias': 'Update POD',
'level_desc': "Normal"    },
'SyncLoop DELETE': {
'alias': 'Delete POD',
'level_desc': "Normal"    },
'Probe succeeded': {
'bbox_color_show': 'whitesmoke',
'level_desc': "Info"    },
'Reason:ContainersNotReady': {
'alias': 'ContainersNotReady',
'level_desc': "Warning"    },
'Readiness probe failed': {
'alias': 'Readiness failed',
'level_desc': "Warning"    },
'Liveness probe failed': {
'alias': 'Liveness failed',
'level_desc': "Warning"    },
'Killing unwanted container': {
'alias': 'Killing unwanted',
'level_desc': "Warning"    },
'Container exited normally': {
'alias': 'Container exited',
'level_desc': "Normal"    },
'Killing container': {
'bbox_color_show': '#FFA500',
'level_desc': "Warning"    },
'will be restarted': {
'alias': 'Pod restart',
'level_desc': "Warning"    },
'SyncLoop REMOVE': {
'alias': 'REMOVE POD',
'level_desc': "Normal"    },
'Pod was deleted and then recreated': {
'alias': 'Pod Recreated',
'level_desc': "Warning"    },
'Pod has been deleted and must be killed': {
'alias': 'Pod delete & kill',
'level_desc': "Normal"    },
'Pod does not exist on the server': {
'alias': 'Pod not exist',
'level_desc': "Normal"    },
}
defconfig_check_and_process():
fork, vinPOD_EVENT_CONFIG.items():
try:
# assert v['bbox_color_show'], f'event: [{k}] has no attribute "bbox_color_show"'# 匹配level的优先级level=LEVEL_MAP[v['level_desc']]
POD_EVENT_CONFIG[k]['level'] =level# 匹配level的颜色color=COLOR_MAP[v['level_desc']]
POD_EVENT_CONFIG[k]['bbox_color_show'] =color# 如果没有设置alias(展示用) 默认用event名ifnotv.get('alias'):
POD_EVENT_CONFIG[k]['alias'] =kexceptExceptionase:
logger.error('config setting error')
logger.error(e)
logger.info('config dict check done')
config_check_and_process()
classEventCounter(Counter):
def__str__(self) ->str:
super().__str__()
_infos= []
for_k, _vinself.items():
_infos.append(str(_k) +':'+str(_v))
return'\n'.join(_infos)
defevent_agg(events: pd.Series) ->pd.Series:
event_list=events.to_list()
event_info=sorted([(
POD_EVENT_CONFIG.get(event).get('level'),
POD_EVENT_CONFIG.get(event).get('bbox_color_show'),
POD_EVENT_CONFIG.get(event).get('level_desc'),
POD_EVENT_CONFIG.get(event).get('alias'),
    ) foreventinevent_list], key=lambdax: x[0], reverse=True)
alias_list= [_[3] for_inevent_info]
event_counter=EventCounter(alias_list)
returnpd.Series(
        {
'event_infos': '\n'.join(event_list),
'event_counter': str(event_counter),
'event_size': len(event_list),
'bbox_color_show': event_info[0][1],  # 每秒取最高'level_desc': event_info[0][2],  # 每秒取最高'alias': '->\n'.join(alias_list)
        }
    )
defdraw_time_text(events: List[str], dates: List[datetime.datetime]):
event_df=pd.DataFrame({"event": events, "dates": dates})  # .to_clipboard()g=event_df['dates'].apply(lambdax: datetime.datetime.strftime(x, "%m-%d %H:%M:%S"))
grouped=event_df.groupby(g)
# for _g, _df in grouped:#     print(_g, _df)event_summary=grouped.apply(
lambdax: event_agg(x['event'])
    )
# 图表所需信息_ylabel= []
_xlim= []
_levels= []
_vert= []
_color= []
cnt=0click_content= []
svg_content= []
forindex, rowinevent_summary.iterrows():
info=''ifrow['event_size'] >=2:
info+=row['event_counter'] +f'\n等级:'+row['level_desc']
svg_content.append((row['alias'].replace('\n', ' '), cnt+1))
else:
info+=row['alias'] +'\n等级:'+row['level_desc']
_ylabel.extend([info, index])
_xlim.extend([cnt+1, cnt+1])
# _levels.extend([-3, 0]) if (cnt % 2 == 0) else _levels.extend([3, 0])ifcnt%2==0:
_levels.extend([-1.5, 0]) ifcnt%4<2else_levels.extend([-3, 0])
else:
_levels.extend([1.5, 0]) ifcnt%4<2else_levels.extend([3, 0])
_vert.extend(['top', 'bottom']) ifcnt%2==0else_vert.extend(['bottom', 'top'])
_color.extend([row['bbox_color_show'], 'lightgreen'])
click_content.append(row['alias'].replace('\n', ' '))
cnt+=1fig, ax=plt.subplots(figsize=(100, 10), constrained_layout=True)
# 标题ax.set(title=f'Pod-lifecycle {args.podname}')
# 添加线条, basefmt设置中线的颜色,linefmt设置线的颜色以及类型# 初步设想:level需要比较均匀的铺在这个上面,直接生成等差数列 然后用标签显示时间 和事件markerline, stemline, baseline=ax.stem(_xlim, _levels,
linefmt="#00BFFF", basefmt="green",
                                             )
# 交点空心,zorder=3设置图层,mec="k"外黑 mfc="w"内白plt.setp(markerline, mec='#00FF00', mfc="w", zorder=3)
# 通过将Y数据替换为零,将标记移到基线markerline.set_ydata(np.zeros(len(_xlim)))
# 添加文字注释ford, l, r, va, colorinzip(_xlim, _levels, _ylabel, _vert, _color):
logger.debug(f'annotate location param: \nd: {d}\nl: {l}\nr: {r}\nva: {va}\ncolor: {color}\n')
ax.annotate(r, xy=(d, l),
xytext=(0, np.sign(l) *3-5ifd%2==0else5),
textcoords="offset points",
va=va, ha="center",
bbox=dict(boxstyle='round', facecolor=color, edgecolor='none', pad=0.2ifl==0else0.8))
# 设置图表的x轴范围为最小和最大日期ax.set_xlim(min(_xlim) -3, max(_xlim) +3)
ax.set_ylim(-5, 5)
# 逆时针30度,刻度右对齐# plt.setp(ax.get_xticklabels(), rotation=30, ha="right")# 隐藏轴线ax.get_yaxis().set_visible(False)
ax.get_xaxis().set_visible(False)
# 隐藏边框forspinein ["left", "top", "right", "bottom"]:
ax.spines[spine].set_visible(False)
# 边距仅设置y轴ax.margins(y=0.3)
# svg本地保存图片 需要添加脚注svg_text_objs= []
foridx, (_content, _x) inenumerate(svg_content, start=1):
logger.debug(f'[{idx}] writing text description on x={_x} desc:{_content}')
_adj_diff=0.4_text_y_lim=_levels[_x*2-2] +_adj_diffif_levels[_x*2-2] <0else_levels[_x*2-2] -_adj_diff_text=ax.text(_x, _text_y_lim, f'[{_ylabel[_x*2-1]}] {_content}', fontsize=12, ha="center")
svg_text_objs.append(_text)
# 根据需要进行图表的调整和保存plt.tight_layout()
plt.savefig(f'{args.podname}-Pod-lifecycle.svg')
logger.info(f'save local image: {args.podname}-Pod-lifecycle.svg')
iflen(_xlim) >=400:
logger.warning(
"""            Too many X-axis elements may cause local image display to be congested.             You can adjust the `figsize` bigger than (100,10) default             or use the `eventlevel` parameter to filter events with low prompt levels            """)
# 控件点击事件即可显示全,删掉这部分展示仅用于绘制本地图片whilesvg_text_objs:
_delete=svg_text_objs.pop()
_delete.remove()
# click回调设置clicks= []
defon_pick(event: PickEvent):
logger.info(event.mouseevent)
ifclicks:
click=clicks.pop()
click.remove()
ifevent.mouseevent.button==1andevent.mouseevent.dblclick==0:
x=event.mouseevent.xdatax_idx=math.floor(x+0.5) -1logger.debug(f'content x index: {x_idx}')
if0<=x_idx<=len(click_content) -1:
msg=click_content[x_idx]
else:
msg='请点击时间轴内的时间或事件描述以展示具体细节'logger.debug(f'content display: {msg}')
click=ax.text(x_idx, 4.5, f'{msg}', fontsize=16, ha="center")
clicks.append(click)
plt.draw()
ax.set_picker(True)
fig.canvas.mpl_connect('pick_event', on_pick)
# 创建一个Slider对象,用于控制横向拖拽ax_slider=plt.axes([0.1, 0.1, 0.65, 0.03])
slider=Slider(ax_slider, '时间轴', min(_xlim) -5, max(_xlim), valinit=0, valstep=0.01)
# 默认展示前20ax.set_xlim(min(_xlim), min(_xlim) +20)
# slider hookdefslider_update(val):
# 获取Slider的值x_range=slider.valifx_range==min(_xlim) -5:
ax.set_xlim(min(_xlim) -5, max(_xlim) +5)
logger.debug(
f'slider info: xlim({x_range},) label(展示总览,)')
slider.valtext.set_text('展示总览')
else:
# 更新图形的x轴范围ax.set_xlim(x_range, x_range+20)
x_show_left=math.floor(min(_xlim) ifx_range<min(_xlim) elsex_range)
x_show_right=math.floor(max(_xlim) ifx_range+20>max(_xlim) elsex_range+20)
# print(x_show_left, x_show_right)slider_label_show_left=_ylabel[x_show_left*2-1]
slider_label_show_right=_ylabel[x_show_right*2-1]
logger.debug(
f'slider info: xlim({x_show_left},{x_show_right}) label({slider_label_show_left},{slider_label_show_right})')
slider.valtext.set_text(' ~\n   '.join([slider_label_show_left, slider_label_show_right]))
fig.canvas.draw_idle()
slider.on_changed(slider_update)
plt.show()
plt.show()
if__name__=='__main__':
target_keywords=POD_EVENT_CONFIG.keys()
dates= []
events= []
event_level_filter=args.eventlevel.split(',')
withopen(args.logfile, 'r') asfile:
forlineinfile:
ifargs.podnameinline:
forkeywordintarget_keywords:
ifPOD_EVENT_CONFIG.get(keyword).get('level_desc') inevent_level_filter:
match=re.search(r'(\w{3} \d{2} \d{2}:\d{2}:\d{2}).+'+'{}'.format(keyword), line)
ifmatch:
# dates.append(match.group(1))dates.append(datetime.datetime.strptime(match.group(1), "%b %d %H:%M:%S"))
events.append(keyword)
breakiflen(dates) ==len(events) !=0:
draw_time_text(events, dates)
else:
logger.error('event list is empty or log file is Incomplete')
raiseValueError(f'data length: dates={len(dates)} events={len(events)} ,pleas check')
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
11天前
|
存储 Kubernetes 调度
【赵渝强老师】什么是Kubernetes的Pod
Pod 是 Kubernetes 中的基本逻辑单位,代表集群上的一个应用实例。它可以由一个或多个容器组成,并包含数据存储和网络配置等资源。Pod 支持多种容器执行环境,如 Docker。Kubernetes 使用 Pod 管理容器,具有简化部署、方便扩展和调度管理等优点。视频讲解和图示详细介绍了 Pod 的组成结构和使用方式。
|
10天前
|
存储 Kubernetes Docker
【赵渝强老师】Kubernetes中Pod的基础容器
Pod 是 Kubernetes 中的基本单位,代表集群上运行的一个进程。它由一个或多个容器组成,包括业务容器、基础容器、初始化容器和临时容器。基础容器负责维护 Pod 的网络空间,对用户透明。文中附有图片和视频讲解,详细介绍了 Pod 的组成结构及其在网络配置中的作用。
【赵渝强老师】Kubernetes中Pod的基础容器
|
10天前
|
运维 Kubernetes Shell
【赵渝强老师】K8s中Pod的临时容器
Pod 是 Kubernetes 中的基本调度单位,由一个或多个容器组成,包括业务容器、基础容器、初始化容器和临时容器。临时容器用于故障排查和性能诊断,不适用于构建应用程序。当 Pod 中的容器异常退出或容器镜像不包含调试工具时,临时容器非常有用。文中通过示例展示了如何使用 `kubectl debug` 命令创建临时容器进行调试。
|
10天前
|
Kubernetes 调度 容器
【赵渝强老师】K8s中Pod中的业务容器
Pod 是 Kubernetes 中的基本调度单元,由一个或多个容器组成。除了业务容器,Pod 还包括基础容器、初始化容器和临时容器。本文通过示例介绍如何创建包含业务容器的 Pod,并提供了一个视频讲解。示例中创建了一个名为 &quot;busybox-container&quot; 的业务容器,并使用 `kubectl create -f firstpod.yaml` 命令部署 Pod。
|
10天前
|
Kubernetes 容器 Perl
【赵渝强老师】K8s中Pod中的初始化容器
Kubernetes的Pod包含业务容器、基础容器、初始化容器和临时容器。初始化容器在业务容器前运行,用于执行必要的初始化任务。本文介绍了初始化容器的作用、配置方法及优势,并提供了一个示例。
|
11天前
|
弹性计算 Kubernetes Perl
k8s 设置pod 的cpu 和内存
在 Kubernetes (k8s) 中,设置 Pod 的 CPU 和内存资源限制和请求是非常重要的,因为这有助于确保集群资源的合理分配和有效利用。你可以通过定义 Pod 的 `resources` 字段来设置这些限制。 以下是一个示例 YAML 文件,展示了如何为一个 Pod 设置 CPU 和内存资源请求(requests)和限制(limits): ```yaml apiVersion: v1 kind: Pod metadata: name: example-pod spec: containers: - name: example-container image:
|
14天前
|
Kubernetes Nacos 微服务
探讨了在Kubernetes中使用Nacos v2.2.3时,强制删除Pod后Pod仍存在的常见问题
本文深入探讨了在Kubernetes中使用Nacos v2.2.3时,强制删除Pod后Pod仍存在的常见问题。通过检查Pod状态、事件、配置,调整Nacos和Kubernetes设置,以及手动干预等步骤,帮助开发者快速定位并解决问题,确保服务稳定运行。
38 2
|
11天前
|
存储 Kubernetes 调度
深入理解Kubernetes中的Pod与Container
深入理解Kubernetes中的Pod与Container
21 0
|
11天前
|
Kubernetes Java 调度
Kubernetes中的Pod垃圾回收策略是什么
Kubernetes中的Pod垃圾回收策略是什么
|
11天前
|
存储 Kubernetes 调度
深度解析Kubernetes中的Pod生命周期管理
深度解析Kubernetes中的Pod生命周期管理

相关产品

  • 容器服务Kubernetes版