【K8S系列】深入解析K8S调度

简介: 【K8S系列】深入解析K8S调度

1 基础介绍

1.1 什么是k8s调度

Kubernetes调度(Scheduling):是指将未调度的Pod自动分配到集群中的节点的过程

Pod是Kubernetes中最小的可部署单元,它通常包括一个或多个容器。

在Kubernetes中,容器可以在集群中的任何节点上运行,调度器可以根据节点的资源使用情况、Pod的资源需求、亲和性和反亲和性等因素,将Pod分配到最合适的节点上运行。


每个Pod都有一个调度器(Scheduler)负责将其分配到一个可用的节点上。

调度器是Kubernetes集群中的一个核心组件,它监视未调度的Pod对象,并为其选择最佳的节点。


Kubernetes调度的工作原理

2.1 原理详解

Kubernetes调度的工作原理可以概括为以下几个步骤:

  1. 创建Pod:用户通过Kubernetes API创建Pod对象,并在其中指定Pod的资源需求、容器镜像等信息。
  2. 调度器监视Pod:Kubernetes调度器监视集群中的未调度Pod对象,并为其选择最佳的节点。
  3. 选择节点:调度器通过算法选择最佳的节点,并将Pod绑定到该节点上。调度器选择节点的依据包括节点的资源使用情况、Pod的资源需求、亲和性和反亲和性等。
  4. 绑定Pod到节点:调度器将Pod和节点之间的绑定信息保存在etcd数据库中,以便节点可以获取Pod的调度信息。
  5. 节点启动Pod节点定期检查etcd数据库中的Pod调度信息,并启动相应的Pod。如果节点故障或资源不足,调度器会重新调度Pod,并将其绑定到其他节点上运行。

2.2 其他因素

调度器选择节点的过程中,有以下一些因素需要考虑:

  1. 节点资源:调度器需要考虑节点的资源使用情况,如CPU、内存、磁盘等。
  2. Pod资源需求:调度器需要考虑Pod的资源需求,如CPU、内存、磁盘等
  3. 调度器选择节点的过程中,有以下一些因素需要考虑:
  4. 节点资源:调度器需要考虑节点的资源使用情况,如CPU、内存、磁盘等。
  5. Pod资源需求:调度器需要考虑Pod的资源需求,如CPU、内存、磁盘等

3 调度算法

调度算法是指决定Pod应该调度到哪个节点上的算法。Kubernetes提供了多种调度算法,可以根据实际情况选择合适的算法。以下是Kubernetes常用的调度算法:

  1. 随机算法
  2. 最小负载算法
  3. 贪心算法
  4. 最佳适应算法
  5. 加权最小平均负载算法

3.1 随机算法

随机算法是最简单的调度算法之一。

  • 规则:它会随机选择一个可用节点,并将Pod调度到该节点上。
  • 效率:这种算法简单、快速,适用于不需要考虑资源利用率和负载均衡的场景。
  • 缺点:随机算法可能会导致节点资源的不均衡分配和资源浪费。

3.2 最小负载算法

最小负载算法会选择当前负载最低的节点,并将Pod调度到该节点上

这种算法可以避免节点资源的不均衡分配,但是可能会导致某些节点的资源利用率过高,从而影响其他Pod的运行。

3.2.1 优点

优点在于可以避免节点资源的不均衡分配和负载过高的问题,从而提高Kubernetes集群的资源利用率和稳定性。同时,最小负载算法可以与其他调度算法结合使用,例如可以与负载均衡算法结合使用,以进一步优化节点的资源利用率和负载均衡。

3.2.2 缺点

缺点在于可能会导致某些节点的资源利用率过低,从而浪费资源。此外,最小负载算法不能保证Pod被调度到最优的节点上,无法满足一些特殊的需求。

3.3 贪心算法

贪心算法是一种基于启发式的算法,它尝试在当前状态下找到最优解。

在Pod调度中,贪心算法会尝试选择最优节点,并将Pod调度到该节点上。

贪心算法的核心思想是:在每一步选择中都采取在当前状态下最优的选择,从而希望最终能够得到全局最优解。

优点

优点在于速度快,可以快速找到局部最优解,适用于大规模的Kubernetes集群。

同时,贪心算法可以与其他调度算法结合使用,例如可以与最小负载算法或最佳适应算法结合使用,以实现更好的负载均衡和资源利用率。

缺点

贪心算法的缺点在于不能保证找到全局最优解,有可能会陷入局部最优解而无法跳出。

此外,贪心算法也可能会导致某些节点的资源利用率过高,从而影响其他Pod的运行。

使用

在实际使用中,贪心算法可以与其他调度算法结合使用,例如可以与最小负载算法或最佳适应算法结合使用,以实现更好的负载均衡和资源利用率。同时,调度器还可以使用亲和性/反亲和性规则来筛选节点,以进一步优化贪心算法的效果。

3.4 最佳适应算法

最佳适应算法(Best Fit Algorithm),它会选择当前可用节点中最适合Pod的节点,并将Pod调度到该节点上。

最佳适应算法考虑节点的资源利用率情况,避免将Pod调度到资源利用率不高的节点上,从而实现负载均衡和资源利用率最大化的目的。

优点

最佳适应算法的优点在于可以避免节点资源的不均衡分配和资源浪费,从而提高Kubernetes集群的资源利用率和稳定性。同时,最佳适应算法可以与其他调度算法结合使用,例如可以与贪心算法或最小负载算法结合使用,以进一步优化节点的资源利用率和负载均衡。

缺点

最佳适应算法的缺点在于可能会导致节点资源利用率的不稳定性,从而影响Pod的运行。如果节点资源利用率变化较快,最佳适应算法可能会导致Pod频繁地迁移,从而影响Pod的稳定性和性能。

3.5 加权最小平均负载算法

加权最小平均负载算法(Weighted Least-Connection Algorithm)是一种调度算法,它会选择当前负载最低且权重最高的节点,并将Pod调度到该节点上。加权最小平均负载算法考虑节点的负载情况和权重,避免将Pod调度到负载过高或权重过低的节点上,从而实现负载均衡和资源利用率最大化的目的。

优点

加权最小平均负载算法的优点在于可以避免节点资源的不均衡分配和负载过高的问题,从而提高Kubernetes集群的资源利用率和稳定性。同时,加权最小平均负载算法可以根据节点的权重分配资源,以满足不同节点的需求。

缺点

加权最小平均负载算法的缺点在于可能会陷入局部最优解而无法跳出。如果节点资源利用率变化较快,加权最小平均负载算法可能会导致Pod频繁地迁移,从而影响Pod的稳定性和性能。

4 调度组件

Kubernetes的调度组件是Kubernetes集群中的一个核心组件,它负责将Pod调度到Kubernetes集群中的节点上,以实现负载均衡和资源利用率最大化的目的。

调度组件通常由以下两个组件组成:

  1. 调度器(Scheduler):负责对新创建的Pod进行调度,选择合适的节点,并将Pod调度到该节点上。调度器会根据节点的资源利用率、亲和性/反亲和性规则、Pod的资源需求等因素来选择节点,并确保Pod能够被成功地调度和运行。
  2. 调度器扩展器(Scheduler Extender):负责对调度器进行扩展,并提供额外的调度策略和规则。调度器扩展器可以通过插件的形式进行扩展,例如可以添加自定义的亲和性/反亲和性规则、节点选择器、调度器过滤器等,以实现更灵活和多样化的调度策略。

调度器实现

Kubernetes还提供了多种调度器实现,包括:

  1. 默认调度器(Default Scheduler):是Kubernetes中的默认调度器,负责对新创建的Pod进行调度,并将Pod调度到合适的节点上。
  2. 自定义调度器(Custom Scheduler):是一种自定义的调度器实现,可以根据实际需求来定义调度策略和规则,以实现更灵活和多样化的调度功能。
  3. 扩展调度器(Extended Scheduler):是一种支持调度器扩展器的调度器实现,可以通过调度器扩展器来添加自定义的调度规则和策略,以实现更灵活和多样化的调度功能。

总之,Kubernetes的调度组件是Kubernetes集群中的一个核心组件,可以实现负载均衡和资源利用率最大化的目的。在实际使用中,需要根据实际情况和需求来选择合适的调度器实现和调度策略,以确保Kubernetes集群的资源利用率最大化。

5 调度示例

5.1 如何实现pod的调度

当我们创建一个Pod时,Pod会被加入到调度器的无调度队列中等待被调度。调度器会定期轮询无调度队列,检查每个Pod的调度需求,然后将它们调度到最适合的节点上。调度器的调度决策是基于节点的资源利用率、Pod的资源需求和亲和性/反亲和性规则等因素。


以下是Pod的调度流程的详细步骤:

  1. 获取Pod的 调度需求
  2. 选择适合的节点
  3. 分配Pod到节点
  4. 保存调度信息
  5. 启动Pod


1 获取Pod的 调度需求

调度器首先获取Pod的调度需求,包括Pod的容器镜像、资源需求和亲和性/反亲和性规则等。

2 选择适合的节点

调度器会根据Pod的调度需求和集群的资源情况,在可用的节点中选择最适合的一个。调度器会根据节点的资源利用率、Pod的资源需求和亲和性/反亲和性规则等因素来进行选择。如果没有可用的节点满足Pod的需求,Pod就会一直处于等待调度的状态。

3 分配Pod到节点

调度器会将Pod分配到选择的节点上,并将Pod对象的spec.nodeName字段设置为节点的名称。这样,kubelet就可以知道Pod被分配到了哪个节点上。

4 保存调度信息

调度器会将Pod和节点之间的绑定信息保存在etcd数据库中。这些信息包括Pod的名称、命名空间、调度时间戳和节点名称等。kube-scheduler会周期性地检查这些绑定信息,以确保Pod已经被分配到了正确的节点上。

5 启动Pod

当Pod被分配到节点上时,kubelet会从etcd数据库中获取Pod的配置信息,并根据这些信息启动Pod中的容器。容器启动后,Pod就可以开始运行了。

总之,Pod的调度流程是由调度器来完成的。调度器会根据节点的资源利用率、Pod的资源需求和亲和性/反亲和性规则等因素来选择最适合的节点,并将Pod分配到节点上运行。一旦Pod被分配到节点上,kubelet就会从etcd数据库中获取Pod的配置信息,并启动Pod中的容器。

5.2 调度器如何选择最适合的节点?

调度器在选择最适合的节点时,会根据一定的策略和算法进行选择。以下是调度器选择节点的一些主要考虑因素:

  • 资源利用率
  • Pod的资源需求
  • 亲和性和反亲和性规则
  • 节点的标签和注释
  • 节点的负载均衡

资源利用率

调度器会检查集群中各个节点的资源使用情况,包括CPU、内存、磁盘和网络等方面的使用情况。调度器会选择资源利用率最低的节点,以确保Pod能够得到足够的资源。

Pod的资源需求

调度器会检查Pod的资源需求,包括CPU和内存等方面的需求。调度器会选择可以满足Pod资源需求的节点,以避免Pod因为资源不足而无法正常运行。

亲和性和反亲和性规则

调度器会检查Pod的亲和性和反亲和性规则。亲和性规则指定了Pod应该调度到哪些节点上,而反亲和性规则指定了Pod不应该调度到哪些节点上。调度器会根据这些规则来选择节点,以确保Pod被调度到最合适的节点上。

节点的标签和注释

调度器会检查节点的标签和注释。节点的标签可以用来标识节点的特性和属性,而注释可以提供节点的附加信息。调度器可以使用这些信息来选择最适合的节点。

节点的负载均衡

调度器会尝试在集群中平衡负载,避免某个节点过度负载,而其他节点资源利用率太低。调度器会选择负载均衡最优的节点,以确保集群中的资源利用率最大化。

总之,调度器在选择最适合的节点时,会考虑多个因素,包括资源利用率、Pod的资源需求、亲和性和反亲和性规则、节点的标签和注释以及负载均衡等。调度器会使用这些信息来选择最优的节点,以确保Pod被调度到最合适的节点上。

5.3 调度器如何检查Pod的资源需求?

调度器在检查Pod的资源需求时,会查看Pod的定义中

spec.containers[*].resources.requests
spec.containers[*].resources.limits

字段中指定的资源需求和资源限制。


resources.requests字段指定了Pod启动时所需的最小资源量。例如,CPU和内存等资源的需求量。如果Pod的实际资源使用量超过了请求量,Kubernetes会杀死该Pod并重新启动。

resources.limits字段指定了Pod最大可以使用的资源量。例如,CPU和内存等资源的限制量。如果Pod的实际资源使用量超过了限制量,Kubernetes会限制该Pod的资源使用,并可能导致Pod无法正常运行。


调度器会根据这些资源需求和限制来选择最适合的节点来调度Pod。调度器在选择节点时会考虑节点的资源利用率和Pod的资源需求,以确保Pod可以得到足够的资源来正常运行。

5.2 如何设置Pod的亲和性和反亲和性规则

在Kubernetes中,亲和性(Affinity)和反亲和性(Anti-Affinity)是用来指定Pod和Node之间关系的规则。通过设置亲和性和反亲和性规则,可以让调度器将Pod分配到最合适的节点上。

亲和性规则用于指示Pod应该被调度到哪些节点上,而反亲和性规则用于指示Pod不应该被调度到哪些节点上。下面是如何设置Pod的亲和性和反亲和性规则:

通过标签(Labels)设置亲和性和反亲和性规则

可以通过标签来设置Pod的亲和性和反亲和性规则。首先,需要在Pod中定义标签选择器(Label Selector),然后使用Node Affinity和Pod Affinity来指定亲和性规则,使用Node Anti-Affinity和Pod Anti-Affinity来指定反亲和性规则。例如,以下是一个使用标签选择器和亲和性规则的Pod定义:

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
  - name: my-container
    image: my-image
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: my-label
            operator: In
            values:
            - my-value

在上面的示例中,Pod选择器使用matchExpressions指定了一个标签选择器,该选择器选择my-label=my-value的节点。然后,使用nodeAffinity指定了一个亲和性规则,该规则要求Pod被调度到拥有该标签的节点上。

通过拓扑域(Topology)设置亲和性和 反亲和性规则

可以使用Topology来指定Pod的亲和性和反亲和性规则。Topology是指节点的拓扑结构,如拓扑域、区域、机架等。使用Topology可以确保Pod被调度到拓扑结构相似的节点上。例如,以下是一个使用Topology和亲和性规则的Pod定义:

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
  - name: my-container
    image: my-image
  affinity:
    podAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
      - labelSelector:
          matchLabels:
            app: my-app
        topologyKey: rack

在上面的示例中,Pod选择器使用matchLabels指定了一个标签选择器,该选择器选择app=my-app的Pod。然后,使用topologyKey指定了一个亲和性规则,该规则要求Pod被调度到与已经调度了app=my-app的Pod在同一个rack中的节点上。


总之,通过设置亲和性和反亲和性规则,可以让调度器将Pod分配到最合适的节点上。可以使用标签或拓扑域来设置Pod的亲和性和反亲和性规则。注意,正确的设置亲和性和反亲和性规则需要了解集群的拓扑结构和资源使用情况,否则可能会导致Pod无法正确调度。

5.2 如何设置Pod的资源限制和请求

在Kubernetes中,可以通过设置Pod的资源限制和请求来控制Pod使用的资源量。资源限制(Resource Limits)指定了Pod最大可以使用的资源量,而资源请求(Resource Requests)则指定了Pod启动时所需的最小资源量。设置Pod的资源限制和请求可以确保Pod在运行时不会使用过多的资源,并且可以提高Pod在集群中的调度成功率。以下是如何设置Pod的资源限制和请求的示例:

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
  - name: my-container
    image: my-image
    resources:
      limits:
        cpu: "1"
        memory: "500Mi"
      requests:
        cpu: "0.5"
        memory: "250Mi"

在上面的示例中,Pod中的容器my-container设置了资源限制和请求。容器的资源限制是1个CPU核心和500MiB内存,而容器的资源请求是0.5个CPU核心和250MiB内存。

可以通过以下方式设置资源限制和请求:

CPU和内存

可以使用CPU和内存来设置资源限制和请求。CPU的单位是CPU核心,内存的单位是字节。可以使用以下格式指定CPU和内存:

  • CPU:使用分数或整数表示CPU核心数量。例如,0.5表示一半核心,1表示一个核心,2表示两个核心。
  • 内存:使用字节、千字节、兆字节或吉字节表示内存大小。例如,1Gi表示1个吉字节,500Mi表示500兆字节。

其他资源

除了CPU和内存之外,还可以使用其他资源来设置资源限制和请求,如GPU、存储等。不同的资源可以使用不同的单位,具体取决于资源类型。可以在Kubernetes文档中查看各种资源类型的详细信息。

总之,设置Pod的资源限制和请求可以控制Pod使用的资源量。可以使用CPU和内存来设置资源限制和请求,也可以使用其他资源类型。在设置资源限制和请求时,需要考虑Pod所需的资源量以及集群的资源使用情况,以避免Pod无法正常运行或影响其他Pod的运行。

6 总结

总之,Kubernetes调度是Kubernetes的核心功能之一,它能够自动将Pod分配到最合适的节点上,并确保Pod在所选节点上正常运行。调度器通过算法选择最佳的节点,并将Pod绑定到该节点上。调度器选择节点的依据包括节点的资源使用情况、Pod的资源需求、亲和性和反亲和性等。管理员可以根据自己的需求选择不同的调度算法,并监视调度器的日志以确保集群的正常运行。  


相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
云原生实践公开课
课程大纲 开篇:如何学习并实践云原生技术 基础篇: 5 步上手 Kubernetes 进阶篇:生产环境下的 K8s 实践 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
3月前
|
Kubernetes 监控 调度
Kubernetes Pod调度:从基础到高级实战技巧
Kubernetes Pod调度:从基础到高级实战技巧
191 0
|
4月前
|
Kubernetes 安全 Cloud Native
云原生|kubernetes|pod或容器的安全上下文配置解析
云原生|kubernetes|pod或容器的安全上下文配置解析
112 0
|
4月前
|
域名解析 Kubernetes 网络协议
k8s教程(service篇)-pod的dns域名
k8s教程(service篇)-pod的dns域名
498 0
|
4月前
|
Kubernetes Cloud Native 调度
云原生|kubernetes|CKA真题解析-------(1-5题)
云原生|kubernetes|CKA真题解析-------(1-5题)
283 0
|
1月前
|
资源调度 算法 Linux
Linux进程/线程的调度机制介绍:详细解析Linux系统中进程/线程的调度优先级规则
Linux进程/线程的调度机制介绍:详细解析Linux系统中进程/线程的调度优先级规则
101 0
|
15天前
|
算法 Linux 调度
深度解析:Linux内核的进程调度机制
【4月更文挑战第12天】 在多任务操作系统如Linux中,进程调度机制是系统的核心组成部分之一,它决定了处理器资源如何分配给多个竞争的进程。本文深入探讨了Linux内核中的进程调度策略和相关算法,包括其设计哲学、实现原理及对系统性能的影响。通过分析进程调度器的工作原理,我们能够理解操作系统如何平衡效率、公平性和响应性,进而优化系统表现和用户体验。
20 3
|
1月前
|
Kubernetes 网络安全 调度
容器服务ACK常见问题之容器服务ACK的eci调度卡住如何解决
容器服务ACK(阿里云容器服务 Kubernetes 版)是阿里云提供的一种托管式Kubernetes服务,帮助用户轻松使用Kubernetes进行应用部署、管理和扩展。本汇总收集了容器服务ACK使用中的常见问题及答案,包括集群管理、应用部署、服务访问、网络配置、存储使用、安全保障等方面,旨在帮助用户快速解决使用过程中遇到的难题,提升容器管理和运维效率。
|
1月前
|
Kubernetes Linux Docker
深度解析:Kubernetes 1.28.2集群安装过程中的关键步骤
本文旨在为读者提供一份详尽的Kubernetes 1.28.2集群安装指南,帮助您从零开始构建稳定、高效的Kubernetes集群。我们将从环境准备、软件安装、集群初始化到节点添加等各个环节进行逐步讲解,确保您能够顺利完成集群的搭建。
|
4月前
|
Kubernetes Cloud Native 安全
云原生|kubernetes|2022年底cks真题解析(11-16)
云原生|kubernetes|2022年底cks真题解析(11-16)
79 0
|
4月前
|
Kubernetes Cloud Native 安全
云原生|kubernetes|2022年底cks真题解析(1-10)
云原生|kubernetes|2022年底cks真题解析(1-10)
37 0

推荐镜像

更多