ClickHouse和Doris超大数据集存储

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: ClickHouse和Doris超大数据集存储

ClickHouse和Doris是两种流行的超大数据集存储方案。虽然它们都面向超大数据集存储,但是它们的设计和实现却不尽相同。在本文中,我们将从实战经验的角度,介绍ClickHouse和Doris的区别,并讨论它们的适用场景。

一. ClickHouse

ClickHouse是俄罗斯互联网公司Yandex开发的列存储数据库。它最初是为了支持Yandex.Metrica(一款用于网站访问和流量分析的工具)的需求而开发的。ClickHouse的特点是高速、高可靠性、可扩展性强、支持SQL、支持复杂查询等。

1. 性能

ClickHouse最大的优点在于其出色的性能。它的查询速度非常快,能够在秒级甚至毫秒级内返回查询结果。这归功于它的列存储架构,它可以对列进行非常高效的压缩和编码操作,从而大大降低了内存和磁盘的使用。另外,ClickHouse的查询引擎也非常高效,它可以并行处理大量的查询请求,从而提高了查询的吞吐量。

2. 可靠性

ClickHouse的可靠性非常高,它支持多副本复制和自动故障转移等功能,可以确保数据的安全和可用性。另外,ClickHouse也支持数据冗余备份和快照备份等功能,可以满足不同的备份需求。

3. 可扩展性

ClickHouse的可扩展性非常强,它支持水平扩展和垂直扩展等多种扩展方式。水平扩展是通过添加更多的节点来增加系统的容量和吞吐量;垂直扩展则是通过增加节点的计算资源和存储容量来提高系统的性能。

4. 支持SQL和复杂查询

ClickHouse支持SQL和复杂查询,包括JOIN、GROUP BY、ORDER BY、DISTINCT、LIMIT等。另外,ClickHouse还支持高级的统计和分析功能,如TopN查询、TimeSeries查询等。

5. 适用场景

ClickHouse适合处理大量的数据,特别是对于需要进行复杂查询和分析的场景。它可以处理亿级别以上的数据,并且可以在秒级别内返回查询结果。因此,它适用于互联网和金融等领域的数据分析和统计需求。

二. Doris

Doris(原名Palo)是国内某互联网公司开发的分布式列存储数据库。它是针对美团的点餐、外卖等业务需求设计的,主要特点是易用、高效和稳定。

1. 性能

Doris的性能也非常优秀。它的查询速度很快,可以在毫秒级内返回查询结果。另外,Doris还支持水平扩展和垂直扩展等多种扩展方式,可以满足不同的性能需求。

2. 可靠性

Doris的可靠性也很高。它支持多副本复制和自动故障转移等功能,可以确保数据的安全和可用性。另外,Doris还支持数据冗余备份和快照备份等功能,可以满足不同的备份需求。

3. 易用性

Doris的易用性非常好。它支持SQL和复杂查询,包括JOIN、GROUP BY、ORDER BY、DISTINCT、LIMIT等,而且使用起来非常简便,不需要特别的学习成本。

4. 适用场景

Doris适用于处理中等规模的数据集,比如亿级别以下的数据。它适合处理各种业务场景,如电商、点餐、外卖等领域的数据分析和统计需求。

三. ClickHouse和Doris的比较

1. 架构

ClickHouse和Doris的架构有一些不同。ClickHouse是基于列存储的数据库,它可以对列进行非常高效的压缩和编码操作,从而大大降低了内存和磁盘的使用。Doris也是基于列存储的数据库,但它采用了分布式文件系统HDFS作为存储后端,这样可以提高数据的可靠性和可扩展性。

2. 性能

ClickHouse和Doris的性能都非常优秀。它们的查询速度都很快,可以在毫秒级别内返回查询结果。不过,由于ClickHouse的列存储能力更强,因此在处理大量数据的场景下,ClickHouse的性能可能更优秀一些。

3. 可靠性

ClickHouse和Doris的可靠性都很高。它们都支持多副本复制和自动故障转移等功能,可以确保数据的安全和可用性。不过,由于Doris采用了分布式文件系统HDFS作为存储后端,因此在数据可靠性和可恢复性方面更有优势。

4. 易用性

ClickHouse和Doris的易用性都非常好。它们都支持SQL和复杂查询,而且使用起来非常简便。如果你对SQL比较熟悉,那么使用这两个数据库应该不会有太大的问题。

5. 适用场景

ClickHouse适合处理大量的数据,特别是对于需要进行复杂查询和分析的场景。它可以处理亿级别以上的数据,并且可以在秒级别内返回查询结果。因此,它适用于互联网和金融等领域的数据分析和统计需求。

Doris适用于处理中等规模的数据集,比如亿级别以下的数据。它适合处理各种业务场景,如电商、点餐、外卖等领域的数据分析和统计需求。

四. 总结

ClickHouse和Doris是两种非常好的超大数据集存储方案。它们都有自己的特点和优势,适用于不同的场景和需求。如果你需要处理大量的数据,并且需要进行复杂的查询和分析,那么你可以选择ClickHouse;如果你的数据规模相对较小,但需要高效和稳定的处理能力,那么你可以选择Doris。无论你选择哪种方案,都需要根据自己的需求和实际情况进行选择。


相关文章
|
存储 数据库 索引
61.【clickhouse】ClickHouse从入门到放弃-MergeTree的存储结构
【clickhouse】ClickHouse从入门到放弃-MergeTree的存储结构
61.【clickhouse】ClickHouse从入门到放弃-MergeTree的存储结构
|
4月前
|
存储 SQL 缓存
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
快手 OLAP 系统为内外多个场景提供数据服务,每天承载近 10 亿的查询请求。原有湖仓分离架构,由离线数据湖和实时数仓组成,面临存储冗余、资源抢占、治理复杂、查询调优难等问题。通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
|
3月前
|
存储 算法 NoSQL
大数据-138 - ClickHouse 集群 表引擎详解3 - MergeTree 存储结构 数据标记 分区 索引 标记 压缩协同
大数据-138 - ClickHouse 集群 表引擎详解3 - MergeTree 存储结构 数据标记 分区 索引 标记 压缩协同
50 0
|
3月前
|
存储 消息中间件 分布式计算
大数据-137 - ClickHouse 集群 表引擎详解2 - MergeTree 存储结构 一级索引 跳数索引
大数据-137 - ClickHouse 集群 表引擎详解2 - MergeTree 存储结构 一级索引 跳数索引
51 0
|
6月前
|
存储 大数据 关系型数据库
从 ClickHouse 到阿里云数据库 SelectDB 内核 Apache Doris:快成物流的数智化货运应用实践
目前已经部署在 2 套生产集群,存储数据总量达百亿规模,覆盖实时数仓、BI 多维分析、用户画像、货运轨迹信息系统等业务场景。
|
7月前
|
存储 SQL 运维
OLAP数据库选型指南:Doris与ClickHouse的深入对比与分析
OLAP数据库选型指南:Doris与ClickHouse的深入对比与分析
|
8月前
|
SQL 数据可视化 Apache
阿里云数据库内核 Apache Doris 兼容 Presto、Trino、ClickHouse、Hive 等近十种 SQL 方言,助力业务平滑迁移
阿里云数据库 SelectDB 内核 Doris 的 SQL 方言转换工具, Doris SQL Convertor 致力于提供高效、稳定的 SQL 迁移解决方案,满足用户多样化的业务需求。兼容 Presto、Trino、ClickHouse、Hive 等近十种 SQL 方言,助力业务平滑迁移。
|
SQL 分布式计算 测试技术
从 Clickhouse 到阿里云数据库 SelectDB 版内核 Apache Doris:有赞业务场景下性能测试与迁移验证
从 Clickhouse 到阿里云数据库 SelectDB 版内核 Apache Doris 迁移实践:有赞查询提速近 10 倍,OLAP 分析更实时高效!
从 Clickhouse 到阿里云数据库 SelectDB 版内核 Apache Doris:有赞业务场景下性能测试与迁移验证
|
SQL 分布式计算 测试技术
从 Clickhouse 到 Apache Doris:有赞业务场景下性能测试与迁移验证
当前,电商运营的主要痛点不仅来自多变的市场和客户需求,也受困于碎片化用户触达等带来的竞争与挑战。为了深度挖掘用户价值、培养用户忠诚度、实现业绩增长,有赞为商家搭建了全方位 OLAP 分析系统,提供实时与离线分析报表、智能营销与人群圈选等 SaaS 服务。本文将详细介绍有赞从 Clickhouse 至 Apache Doris 的迁移规划和性能对比测试实践,分享如何基于 Apache Doris 统一 OLAP 技术栈,并满足庞大数据体量下的实时分析与极速查询,最终有赞在多个场景下实现查询平均提速 200% 。
359 0
|
大数据 关系型数据库 MySQL
字节、腾讯争先部署,ClickHouse+Doris 赶超 MySQL 810 倍
阿里流传着这样一句话,“一切业务数据化,一切数据业务化”。
216 0

热门文章

最新文章