阿里云数据库内核 Apache Doris 兼容 Presto、Trino、ClickHouse、Hive 等近十种 SQL 方言,助力业务平滑迁移

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 阿里云数据库 SelectDB 内核 Doris 的 SQL 方言转换工具, Doris SQL Convertor 致力于提供高效、稳定的 SQL 迁移解决方案,满足用户多样化的业务需求。兼容 Presto、Trino、ClickHouse、Hive 等近十种 SQL 方言,助力业务平滑迁移。

2023 年 3 月,在阿里云瑶池数据库峰会上,阿里云与飞轮科技正式达成战略合作协议,双方旨在共同研发名为“阿里云数据库 SelectDB 版”的新一代实时数据仓库,为用户提供在阿里云上的全托管服务。
SelectDB 是飞轮科技基于 Apache Doris 内核打造的聚焦于企业大数据实时分析需求的企业级产品。因此阿里云数据库 SelectDB 版也延续了 Apache Doris 性能优异、架构精简、稳定可靠、生态丰富等核心特性,同时还融入了云服务随需而用的特性,通过云原生存算分离的创新架构,为企业带来分钟级弹性伸缩、高性价比、简单易用、安全稳定的一键式云上实时分析体验。
为了更深度的了解阿里云数据库 SelectDB 版,我们可以全面多角度的了解 Apache Doris 的应用实践和经验。

随着版本迭代,Apache Doris 一直在拓展应用场景边界,从典型的实时报表、交互式 Ad-hoc 分析等 OLAP 场景到湖仓一体、高并发数据服务、日志检索分析及批量数据处理,越来越多用户与企业开始将 Apache Doris 作为统一的数据分析产品,以解决多组件带来的数据冗余、架构复杂、分析时效性低、运维难度大等问题。

然而在架构统一和升级的过程中,由于部分大数据分析系统有自己的 SQL 方言、需要对 SQL 语法进行一定程度的修改,另外由于大量原有系统的 SQL 与业务逻辑相关联,需要进行大量业务逻辑的改造,这不可避免地增加了额外迁移成本。

为了帮助企业有效应对这些挑战,Apache Doris 2.1 版本提供了 SQL 方言兼容与转换方案—— Doris SQL Convertor,兼容了包括 Presto、Trino、Hive、ClickHouse、PostgreSQL 等在内多种 SQL 语法。 用户可以在 Doris 中直接使用相应系统的 SQL 语法执行查询,也可以在可视化界面对原有的 SQL 语句进行批量转换。通过 Doris SQL Convertor,能够有效减轻用户业务迁移成本,提供更加顺畅地业务迁移体验。

为了让用户更便捷、低成本地体验转化器功能,我们提供了在线体验界面,欢迎使用 SQL Convertor Playground

同时,为了让大家快速学习和使用 SQL 转化器,我们还提供了实操演示视频,详细展示使用方式和性能表现。

核心特性

01 无缝切换,高度兼容多种 SQL 方言

无需手动对原有系统的 SQL 方言进行改写,用户仅需要在 Apache Doris 会话变量中设置 set sql_dialect= XXX,即可直接在 Doris 中执行该 SQL 语法的查询。

我们在实际客户场景中进行了大量兼容性测试,以 ClickHouse 和 Presto 方言为例。在某些社区用户的实际线上业务 SQL 兼容性测试中,Doris SQL Convertor 在全部 3 万多条查询语句中,与 Presto SQL 兼容度高达 99.6% ,与 ClickHouse 方言兼容度高达 98%。
目前,Doris SQL Convertor 已支持了多种主流 SQL 方言,包括 Presto、Trino、Hive、ClickHouse、PostgreSQL 等。后续我们也将继续收集用户的反馈,在持续优化多种语法兼容性的同时,支持如 Teradata 、SQL Server、Snowflake 等更多方言,以满足用户更多样化的业务需求。

02 简单易用,支持一键批量生成

除了直接在命令行中执行查询 SQL 以外,我们还提供了可视化界面,支持文本输入和文件上传两种模式。对于单个 SQL,用户可以直接在 Web 界面中进行文本输入。如若存量 SQL 规模庞大,可以通过上传文件进行多个 SQL 的一键批量转换。

doris-convertor.gif

安装部署与使用介绍

01 服务部署与使用

1. 下载最新版本的 SQL 方言转换工具

2.在任意 FE 节点,通过以下命令启动服务。

  • 该服务是一个无状态的服务,可随时启停;
  • 该命令中的 port=5001 是服务端口,可以指定为任意一个可用端口。
  • 建议在每个 FE 节点都单独启动一个服务。
nohup ./doris-sql-convertor-1.0.1-bin-x86 run --host=0.0.0.0 --port=5001 &

3.启动 Doris 集群,版本需为 Doris 2.1 或更高

4.在 Doris 中设置 SQL 方言转换服务的 URL。该命令中127.0.0.1:5001 是 SQL 方言转换服务的部署节点 IP 和端口。

MySQL> set global sql_converter_service_url = "http://127.0.0.1:5001/api/v1/convert"

在完成服务部署后,我们可以直接在命令行中执行 SQL,在此以 Presto 与 Clickhouse SQL 方言为例。在会话变量中设置set sql_dialect = ``XXX 即可开启服务,执行示例如下:

Presto

mysql> set sql_dialect=presto;                                                                                                                                                                                                             
Query OK, 0 rows affected (0.00 sec) 

mysql> SELECT cast(start_time as varchar(20)) as col1,                                                                                                                                                                                     
            array_distinct(arr_int) as col2,                                                                                                                                                                                             
            FILTER(arr_str, x -> x LIKE '%World%') as col3,                                                                                                                                                                              
            to_date(value,'%Y-%m-%d') as col4,                                                                                                                                                                                           
            YEAR(start_time) as col5,                                                                                                                                                                                                    
            date_add('month', 1, start_time) as col6,                                                                                                                                                                                    
            REGEXP_EXTRACT_ALL(value, '-.') as col7,                                                                                                                                                                                     
            JSON_EXTRACT('{"id": "33"}', '$.id')as col8,                                                                                                                                                                                 
            element_at(arr_int, 1) as col9,                                                                                                                                                                                              
            date_trunc('day',start_time) as col10                                                                                                                                                                                        
         FROM test_sqlconvert                                                                                                                                                                                                            
         where date_trunc('day',start_time)= DATE'2024-05-20'                                                                                                                                                                            
     order by id;                                                                                                                                                                                                                        
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                                                                                
| col1                | col2      | col3      | col4       | col5 | col6                | col7        | col8 | col9 | col10               |                                                                                                
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                                                                                
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" |    1 | 2024-05-20 00:00:00 |                                                                                                
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                                                                                
1 row in set (0.03 sec)

ClickHouse

mysql> set sql_dialect=clickhouse;                                                                                                                                             
Query OK, 0 rows affected (0.00 sec)                                                                                                                                           

mysql> select  toString(start_time) as col1,                                                                                                                                   
             arrayCompact(arr_int) as col2,                                                                                                                                  
             arrayFilter(x -> x like '%World%',arr_str)as col3,                                                                                                              
             toDate(value) as col4,                                                                                                                                          
             toYear(start_time)as col5,                                                                                                                                      
             addMonths(start_time, 1)as col6,                                                                                                                                
             extractAll(value, '-.')as col7,                                                                                                                                 
             JSONExtractString('{"id": "33"}' , 'id')as col8,                                                                                                                
             arrayElement(arr_int, 1) as col9,                                                                                                                               
             date_trunc('day',start_time) as col10                                                                                                                           
          FROM test_sqlconvert                                                                                                                                               
          where date_trunc('day',start_time)= '2024-05-20 00:00:00'                                                                                                          
     order by id;                                                                                                                                                   
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    
| col1                | col2      | col3      | col4       | col5 | col6                | col7        | col8 | col9 | col10               |                                    
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" |    1 | 2024-05-20 00:00:00 |                                    
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    
1 row in set (0.02 sec)

02 可视化界面部署与使用

针对大规模历史业务逻辑转换的需求,推荐使用可视化界面,通过文件批量上传完成方言转换。

可视化界面的部署过程如下:

  1. 环境要求: docker 、docker-compose
  2. 获取 Doris-SQL-Convertor Docker 镜像包(文末附获取 Docker 镜像包方式)
  3. 创建镜像网络
       docker network create app_network
    
  4. 解压安装包

       tar xzvf doris-sql-convertor-1.0.1.tar.gz
    
       cd doris-sql-convertor
    
  5. 编辑环境变量 vim .env

       FLASK_APP=server/app.py
       FLASK_DEBUG=1
       API_HOST=http://doris-sql-convertor-api:5000
    
       # DOCKER TAG
       API_TAG=latest
       WEB_TAG=latest
    
  6. 启动
       sh start.sh
    

在部署完成后,可以在本地浏览器中通过 ip:8080 访问。当前默认端口为 8080,可以修改映射端口。在界面中,可直接选择来源方言,输入需要转换的 SQL 方言,并点击 Convert 实现转换。

提示:

  1. 进行批量转换时每条 SQL 需要以 ; 结束
  2. 最多支持 239 个 UNION ALL 转换

结束语

作为一款强大而易用的 SQL 方言转换工具,Doris SQL Convertor 致力于提供高效、稳定的 SQL 迁移解决方案,满足用户多样化的业务需求。无论是平滑无痕的方言转换,还是复杂的批量 SQL 处理任务,Doris SQL Convertor 都能够提供快速而稳定的转换体验,确保转化过程中的完整性与准确性。

未来,我们将不断扩展支持更多的 SQL 方言并持续提高 SQL 方言的兼容性,以满足不断变化的迁移需求。

相关文章
|
9月前
|
SQL HIVE
【Hive SQL 每日一题】环比增长率、环比增长率、复合增长率
该文介绍了环比增长率、同比增长率和复合增长率的概念及计算公式,并提供了SQL代码示例来计算商品的月度增长率。环比增长率是相邻两期数据的增长率,同比增长率是与去年同期相比的增长率,复合增长率则是连续时间段内平均增长的速率。文章还包含了一组销售数据用于演示如何运用这些增长率进行计算。
296 4
|
4月前
|
SQL 分布式计算 Hadoop
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
122 3
|
4月前
|
SQL 消息中间件 分布式计算
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)
133 0
|
4月前
|
SQL 大数据
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(二)
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(二)
103 0
|
4月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
96 0
|
4月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
155 0
|
7月前
|
SQL 分布式计算 关系型数据库
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
91 2
|
7月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之如何使用Flink SQL连接带有Kerberos认证的Hive
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
7月前
|
存储 大数据 关系型数据库
从 ClickHouse 到阿里云数据库 SelectDB 内核 Apache Doris:快成物流的数智化货运应用实践
目前已经部署在 2 套生产集群,存储数据总量达百亿规模,覆盖实时数仓、BI 多维分析、用户画像、货运轨迹信息系统等业务场景。
|
9月前
|
SQL HIVE
【Hive SQL】字符串操作函数你真的会用吗?
本文介绍了SQL中判断字符串是否包含子串的几种方法。`IN`函数判断元素是否完全等于给定元素组中的某项,而非包含关系。`INSTR`和`LOCATE`函数返回子串在字符串中首次出现的位置,用于检测是否存在子串。`SUBSTR`则用于提取字符串的子串。`LIKE`用于模糊匹配,常与通配符配合使用。注意`IN`并非用于判断子串包含。
637 3

热门文章

最新文章