【100天精通Python】Day69:Python可视化_实战:导航定位中预测轨迹和实际轨迹的3D动画,示例+代码

简介: 【100天精通Python】Day69:Python可视化_实战:导航定位中预测轨迹和实际轨迹的3D动画,示例+代码

1. 预测的3D轨迹和实际轨迹的动画图,同时动态更新

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation, PillowWriter
# 假设您有两组连续平滑的姿势数据集,一组表示预测值,一组表示真值
# 每个数据点包含姿势信息 [x, y, z, roll, pitch, yaw]
# 这里使用一些示例数据,您需要替换为您的实际数据
num_poses = 200  # 增加轨迹点数
t = np.linspace(0, 20, num_poses)  # 时间点,使轨迹变得更长
# 生成示例数据来表示预测值轨迹
x_pred = np.sin(t)
y_pred = np.cos(t)
z_pred = np.linspace(0, 10, num_poses)
# 生成示例数据来表示真值轨迹
x_true = np.sin(t) + 0.5  # 真值轨迹稍微偏移
y_true = np.cos(t) + 0.5
z_true = np.linspace(0, 10, num_poses)
# 创建一个 3D 图形
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 创建空的轨迹线,一个红色表示预测值,一个蓝色表示真值
line_pred, = ax.plot([], [], [], marker='o', linestyle='-', markersize=4, color='red', label='Predicted Trajectory')
line_true, = ax.plot([], [], [], marker='o', linestyle='-', markersize=4, color='green', label='True Trajectory')
# 设置图形标题和轴标签
ax.set_title('Pose Trajectories (Predicted vs. True)')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
# 添加图例
ax.legend(loc='upper right')
# 初始化函数,用于绘制空轨迹线
def init():
    line_pred.set_data([], [])
    line_pred.set_3d_properties([])
    line_true.set_data([], [])
    line_true.set_3d_properties([])
    return line_pred, line_true
# 更新函数,用于更新轨迹线的数据
def update(frame):
    line_pred.set_data(x_pred[:frame], y_pred[:frame])
    line_pred.set_3d_properties(z_pred[:frame])
    line_true.set_data(x_true[:frame], y_true[:frame])
    line_true.set_3d_properties(z_true[:frame])
    # 扩大坐标范围,以包围轨迹
    ax.set_xlim(min(x_true) - 1, max(x_true) + 1)
    ax.set_ylim(min(y_true) - 1, max(y_true) + 1)
    ax.set_zlim(min(z_true) - 1, max(z_true) + 1)
    return line_pred, line_true
# 创建动画对象
ani = FuncAnimation(fig, update, frames=num_poses, init_func=init, blit=True)
# 创建一个文件名为animation.gif的视频文件,使用PillowWriter
ani.save('animation_gt.gif', writer=PillowWriter(fps=30))
# 显示动画
plt.show()

2 真值轨迹设置为静态的,预测轨迹不断更新

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation, PillowWriter
# 假设您有两组连续平滑的姿势数据集,一组表示预测值,一组表示真值
# 每个数据点包含姿势信息 [x, y, z, roll, pitch, yaw]
# 这里使用一些示例数据,您需要替换为您的实际数据
num_poses = 200  # 增加轨迹点数
t = np.linspace(0, 20, num_poses)  # 时间点,使轨迹变得更长
# 生成示例数据来表示预测值轨迹
x_pred = np.sin(t)
y_pred = np.cos(t)
z_pred = np.linspace(0, 10, num_poses)
# 生成示例数据来表示真值轨迹
x_true = np.sin(t) + np.random.uniform(-0.2, 0.3)  # 真值轨迹稍微偏移
y_true = np.sin(t) + np.random.uniform(-0.2, 0.3)  # 真值轨迹稍微偏移
z_true = np.linspace(0, 10, num_poses)
# 创建一个 3D 图形
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 创建空的轨迹线,一个红色表示预测值,一个绿色表示真值
line_pred, = ax.plot([], [], [], marker='o', linestyle='-', markersize=4, color='red', label='Predicted Trajectory')
line_true, = ax.plot(x_true, y_true, z_true, marker='o', linestyle='-', markersize=4, color='green', label='True Trajectory')
# 设置图形标题和轴标签
ax.set_title('Pose Trajectories (Predicted vs. True)')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
# 添加图例
ax.legend(loc='upper right')
# 设置轨迹显示范围
ax.set_xlim(-2, 2)  # X轴范围
ax.set_ylim(-2, 2)  # Y轴范围
ax.set_zlim(0, 12)  # Z轴范围
# 初始化函数,用于绘制空轨迹线
def init():
    line_pred.set_data([], [])
    line_pred.set_3d_properties([])
    return line_pred, line_true
# 更新函数,用于更新预测轨迹的数据
def update(frame):
    line_pred.set_data(x_pred[:frame], y_pred[:frame])
    line_pred.set_3d_properties(z_pred[:frame])
    return line_pred, line_true
# 创建动画对象
ani = FuncAnimation(fig, update, frames=num_poses, init_func=init, blit=True)
# 创建一个文件名为animation.gif的视频文件,使用PillowWriter
ani.save('animation_1.gif', writer=PillowWriter(fps=30))
# 显示动画
plt.show()

3 网格的三维坐标系有旋转运动,以此全方位展示预测轨迹和真值轨迹之间的空间关系

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation, PillowWriter
# 假设您有两组连续平滑的姿势数据集,一组表示预测值,一组表示真值
# 每个数据点包含姿势信息 [x, y, z, roll, pitch, yaw]
# 这里使用一些示例数据,您需要替换为您的实际数据
num_poses = 200  # 增加轨迹点数
t = np.linspace(0, 20, num_poses)  # 时间点,使轨迹变得更长
# 生成示例数据来表示预测值轨迹
x_pred = np.sin(t)
y_pred = np.cos(t)
z_pred = np.linspace(0, 10, num_poses)
# 生成示例数据来表示真值轨迹
x_true = np.sin(t) + 0.5  # 真值轨迹稍微偏移
y_true = np.cos(t) + 0.5
z_true = np.linspace(0, 10, num_poses)
# 创建一个 3D 图形
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 创建空的轨迹线,一个红色表示预测值,一个蓝色表示真值
line_pred, = ax.plot([], [], [], marker='o', linestyle='-', markersize=4, color='red', label='Predicted Trajectory')
line_true, = ax.plot(x_true, y_true, z_true, marker='o', linestyle='-', markersize=4, color='blue', label='True Trajectory')
# 设置图形标题和轴标签
ax.set_title('Pose Trajectories (Predicted vs. True)')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
# 添加图例
ax.legend(loc='upper right')
# 设置轨迹显示范围
ax.set_xlim(-2, 2)  # X轴范围
ax.set_ylim(-2, 2)  # Y轴范围
ax.set_zlim(0, 12)  # Z轴范围
# 初始化函数,用于绘制空轨迹线
def init():
    line_pred.set_data([], [])
    line_pred.set_3d_properties([])
    return line_pred, line_true
# 更新函数,用于更新预测轨迹的数据和整体的旋转运动
def update(frame):
    line_pred.set_data(x_pred[:frame], y_pred[:frame])
    line_pred.set_3d_properties(z_pred[:frame])
    # 添加整体的旋转运动
    ax.view_init(elev=20, azim=frame)  # 调整视角,azim控制旋转
    return line_pred, line_true
# 创建动画对象
ani = FuncAnimation(fig, update, frames=num_poses, init_func=init, blit=True)
# 创建一个文件名为animation.gif的视频文件,使用PillowWriter
ani.save('animation.gif', writer=PillowWriter(fps=30))
# 显示动画
plt.show()

更新函数中使用了ax.view_init来控制整体的旋转运动,elev参数用于调整仰角,azim参数用于控制旋转。您可以根据需要调整elevazim的值来实现所需的旋转效果。

image.png

目录
相关文章
|
1天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
1天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
13 5
|
1天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
11 4
|
6月前
|
机器学习/深度学习 存储 数据可视化
数据分享|Python在Scikit-Learn可视化随机森林中的决策树分析房价数据
数据分享|Python在Scikit-Learn可视化随机森林中的决策树分析房价数据
|
6月前
|
传感器 数据可视化 BI
python研究汽车传感器数据统计可视化分析
python研究汽车传感器数据统计可视化分析
|
6月前
|
自然语言处理 数据可视化 数据挖掘
数据代码分享|Python对全球Covid-19疫情失业数据相关性、可视化分析
数据代码分享|Python对全球Covid-19疫情失业数据相关性、可视化分析
|
6月前
|
数据可视化 数据处理 索引
Python用GARCH对ADBL股票价格时间序列趋势滚动预测、损失、可视化分析
Python用GARCH对ADBL股票价格时间序列趋势滚动预测、损失、可视化分析
|
6月前
|
新零售 分布式计算 数据可视化
数据分享|基于Python、Hadoop零售交易数据的Spark数据处理与Echarts可视化分析
数据分享|基于Python、Hadoop零售交易数据的Spark数据处理与Echarts可视化分析
|
数据可视化 数据挖掘 Python
python可视化数据分析开心麻花影视作品分析词云折线图等源码
python可视化数据分析开心麻花影视作品分析词云折线图等源码
244 0
|
安全 数据可视化 Python
使用Python可视化并分析数据 大型流行病如何影响金融市场(三)
使用Python可视化并分析数据 大型流行病如何影响金融市场(三)
126 0
使用Python可视化并分析数据 大型流行病如何影响金融市场(三)

热门文章

最新文章