【100天精通Python】Day69:Python可视化_实战:导航定位中预测轨迹和实际轨迹的3D动画,示例+代码

简介: 【100天精通Python】Day69:Python可视化_实战:导航定位中预测轨迹和实际轨迹的3D动画,示例+代码

1. 预测的3D轨迹和实际轨迹的动画图,同时动态更新

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation, PillowWriter
# 假设您有两组连续平滑的姿势数据集,一组表示预测值,一组表示真值
# 每个数据点包含姿势信息 [x, y, z, roll, pitch, yaw]
# 这里使用一些示例数据,您需要替换为您的实际数据
num_poses = 200  # 增加轨迹点数
t = np.linspace(0, 20, num_poses)  # 时间点,使轨迹变得更长
# 生成示例数据来表示预测值轨迹
x_pred = np.sin(t)
y_pred = np.cos(t)
z_pred = np.linspace(0, 10, num_poses)
# 生成示例数据来表示真值轨迹
x_true = np.sin(t) + 0.5  # 真值轨迹稍微偏移
y_true = np.cos(t) + 0.5
z_true = np.linspace(0, 10, num_poses)
# 创建一个 3D 图形
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 创建空的轨迹线,一个红色表示预测值,一个蓝色表示真值
line_pred, = ax.plot([], [], [], marker='o', linestyle='-', markersize=4, color='red', label='Predicted Trajectory')
line_true, = ax.plot([], [], [], marker='o', linestyle='-', markersize=4, color='green', label='True Trajectory')
# 设置图形标题和轴标签
ax.set_title('Pose Trajectories (Predicted vs. True)')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
# 添加图例
ax.legend(loc='upper right')
# 初始化函数,用于绘制空轨迹线
def init():
    line_pred.set_data([], [])
    line_pred.set_3d_properties([])
    line_true.set_data([], [])
    line_true.set_3d_properties([])
    return line_pred, line_true
# 更新函数,用于更新轨迹线的数据
def update(frame):
    line_pred.set_data(x_pred[:frame], y_pred[:frame])
    line_pred.set_3d_properties(z_pred[:frame])
    line_true.set_data(x_true[:frame], y_true[:frame])
    line_true.set_3d_properties(z_true[:frame])
    # 扩大坐标范围,以包围轨迹
    ax.set_xlim(min(x_true) - 1, max(x_true) + 1)
    ax.set_ylim(min(y_true) - 1, max(y_true) + 1)
    ax.set_zlim(min(z_true) - 1, max(z_true) + 1)
    return line_pred, line_true
# 创建动画对象
ani = FuncAnimation(fig, update, frames=num_poses, init_func=init, blit=True)
# 创建一个文件名为animation.gif的视频文件,使用PillowWriter
ani.save('animation_gt.gif', writer=PillowWriter(fps=30))
# 显示动画
plt.show()

2 真值轨迹设置为静态的,预测轨迹不断更新

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation, PillowWriter
# 假设您有两组连续平滑的姿势数据集,一组表示预测值,一组表示真值
# 每个数据点包含姿势信息 [x, y, z, roll, pitch, yaw]
# 这里使用一些示例数据,您需要替换为您的实际数据
num_poses = 200  # 增加轨迹点数
t = np.linspace(0, 20, num_poses)  # 时间点,使轨迹变得更长
# 生成示例数据来表示预测值轨迹
x_pred = np.sin(t)
y_pred = np.cos(t)
z_pred = np.linspace(0, 10, num_poses)
# 生成示例数据来表示真值轨迹
x_true = np.sin(t) + np.random.uniform(-0.2, 0.3)  # 真值轨迹稍微偏移
y_true = np.sin(t) + np.random.uniform(-0.2, 0.3)  # 真值轨迹稍微偏移
z_true = np.linspace(0, 10, num_poses)
# 创建一个 3D 图形
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 创建空的轨迹线,一个红色表示预测值,一个绿色表示真值
line_pred, = ax.plot([], [], [], marker='o', linestyle='-', markersize=4, color='red', label='Predicted Trajectory')
line_true, = ax.plot(x_true, y_true, z_true, marker='o', linestyle='-', markersize=4, color='green', label='True Trajectory')
# 设置图形标题和轴标签
ax.set_title('Pose Trajectories (Predicted vs. True)')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
# 添加图例
ax.legend(loc='upper right')
# 设置轨迹显示范围
ax.set_xlim(-2, 2)  # X轴范围
ax.set_ylim(-2, 2)  # Y轴范围
ax.set_zlim(0, 12)  # Z轴范围
# 初始化函数,用于绘制空轨迹线
def init():
    line_pred.set_data([], [])
    line_pred.set_3d_properties([])
    return line_pred, line_true
# 更新函数,用于更新预测轨迹的数据
def update(frame):
    line_pred.set_data(x_pred[:frame], y_pred[:frame])
    line_pred.set_3d_properties(z_pred[:frame])
    return line_pred, line_true
# 创建动画对象
ani = FuncAnimation(fig, update, frames=num_poses, init_func=init, blit=True)
# 创建一个文件名为animation.gif的视频文件,使用PillowWriter
ani.save('animation_1.gif', writer=PillowWriter(fps=30))
# 显示动画
plt.show()

3 网格的三维坐标系有旋转运动,以此全方位展示预测轨迹和真值轨迹之间的空间关系

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation, PillowWriter
# 假设您有两组连续平滑的姿势数据集,一组表示预测值,一组表示真值
# 每个数据点包含姿势信息 [x, y, z, roll, pitch, yaw]
# 这里使用一些示例数据,您需要替换为您的实际数据
num_poses = 200  # 增加轨迹点数
t = np.linspace(0, 20, num_poses)  # 时间点,使轨迹变得更长
# 生成示例数据来表示预测值轨迹
x_pred = np.sin(t)
y_pred = np.cos(t)
z_pred = np.linspace(0, 10, num_poses)
# 生成示例数据来表示真值轨迹
x_true = np.sin(t) + 0.5  # 真值轨迹稍微偏移
y_true = np.cos(t) + 0.5
z_true = np.linspace(0, 10, num_poses)
# 创建一个 3D 图形
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 创建空的轨迹线,一个红色表示预测值,一个蓝色表示真值
line_pred, = ax.plot([], [], [], marker='o', linestyle='-', markersize=4, color='red', label='Predicted Trajectory')
line_true, = ax.plot(x_true, y_true, z_true, marker='o', linestyle='-', markersize=4, color='blue', label='True Trajectory')
# 设置图形标题和轴标签
ax.set_title('Pose Trajectories (Predicted vs. True)')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
# 添加图例
ax.legend(loc='upper right')
# 设置轨迹显示范围
ax.set_xlim(-2, 2)  # X轴范围
ax.set_ylim(-2, 2)  # Y轴范围
ax.set_zlim(0, 12)  # Z轴范围
# 初始化函数,用于绘制空轨迹线
def init():
    line_pred.set_data([], [])
    line_pred.set_3d_properties([])
    return line_pred, line_true
# 更新函数,用于更新预测轨迹的数据和整体的旋转运动
def update(frame):
    line_pred.set_data(x_pred[:frame], y_pred[:frame])
    line_pred.set_3d_properties(z_pred[:frame])
    # 添加整体的旋转运动
    ax.view_init(elev=20, azim=frame)  # 调整视角,azim控制旋转
    return line_pred, line_true
# 创建动画对象
ani = FuncAnimation(fig, update, frames=num_poses, init_func=init, blit=True)
# 创建一个文件名为animation.gif的视频文件,使用PillowWriter
ani.save('animation.gif', writer=PillowWriter(fps=30))
# 显示动画
plt.show()

更新函数中使用了ax.view_init来控制整体的旋转运动,elev参数用于调整仰角,azim参数用于控制旋转。您可以根据需要调整elevazim的值来实现所需的旋转效果。

image.png

目录
相关文章
|
15天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
57 8
|
18天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
80 7
|
19天前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
20天前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
44 6
|
前端开发 Python
Python HTML和CSS 9:定位布局
Python HTML和CSS 9:定位布局
140 0
Python HTML和CSS 9:定位布局
|
21天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
19天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
8天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
101 80
|
26天前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
134 59
|
6天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
29 2