Python 数据分析入门教程:Numpy、Pandas、Matplotlib和Scikit-Learn详解

简介: Python 数据分析入门教程:Numpy、Pandas、Matplotlib和Scikit-Learn详解

Python数据分析入门教程

Numpy

NumPy是一个Python的科学计算基础模块,提供了多维数组和矩阵操作功能。

import numpy as np
arr = np.array([1, 2, 3]) 
print(arr)

NumPy中的数组比Python自带的列表更适合进行数值计算和数据分析。

Pandas库

Pandas建立在NumPy之上,提供了更高级的数据分析功能。

import pandas as pd
data = pd.DataFrame({
  "name":["John", "Mary"],
  "age":[30, 25]  
})
print(data)

Pandas中的DataFrame可以看成是一个二维表格,便于加载和分析数据。

Matplotlib绘图

Matplotlib可以用来绘制各种图表,常用于数据分析可视化。

import matplotlib.pyplot as plt
x = [1, 2, 3, 4]
y = [2, 4, 6, 8]
plt.plot(x, y)
plt.show()

条形图、散点图、直方图等多种图表可用少量代码绘制。

Scikit-Learn机器学习

Scikit-Learn提供了常用的机器学习算法。

from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)

可以基于Pandas和Scikit-Learn构建数据分析与机器学习 Pipeline。

NumPy数组与运算

NumPy是Python语言的一个重要扩展程序库,主要用于数组与矩阵运算,对于数据分析非常关键。本文将详细介绍NumPy的数组对象以及相关的运算操作。

NumPy数组对象

NumPy中的ndarray(N维数组对象)是一个快速灵活的大数据集容器,比标准Python列表更适合用于科学与工程计算。

import numpy as np
arr = np.array([1, 2, 3])
print(arr)
arr = np.array([[1, 2], [3, 4]]) 
print(arr) 
ndarray是一个同质数据的多维容器,在创建时可以指定数据类型。
python
arr = np.array([1, 2, 3], dtype=np.float32)
ndarray的维数 called shape,可以通过shape属性获得:
python 
arr = np.array([[1,2,3], [4,5,6]])
print(arr.shape) # (2, 3) 

维数可以超过2,表示高维数组。数组大小调用size属性。

数组创建函数

np.array是创数组的最基本方法。np还提供了其他创建数组的函数:

arr = np.zeros(10) # 10个0 
arr = np.ones((2, 3), dtype=int) # 2x3全1数组
arr = np.full((3, 5), 6) # 3x5全6数组
np.random模块可以生成随机数组:
python
arr = np.random.random((2, 4)) # 2x4随机数组
arr = np.random.normal(0, 1, (3, 3)) # 正态分布 

数组运算

NumPy中可以对整个数组进行算术运算,逐元素运算:

arr1 = np.array([1, 2, 3])
arr2 = np.array([2, 3, 4])
print(arr1 + arr2) # [3 5 7]
print(arr1 * 2) # [2 4 6]

常用的数组运算还包括求和、统计、广播等:

arr = np.array([[1,2], [3,4]]) 
print(arr.sum()) # 10
print(arr.min()) # 1
print(arr.max()) # 4 
arr1 = np.array([[1, 2]])
arr2 = np.array([2, 3])
print(arr1 + arr2) # broadcasting

数组索引

ndarray支持多维索引,可以获取某个元素:

arr = np.array([[1,2,3], [4,5,6], [7,8,9]])
print(arr[1, 2]) # 6
print(arr[0:2, 1]) # [2 5] 切片
布尔数组索引:
python 
arr = np.array([1, 2, 3, 4])
bool_idx = arr > 2 
print(arr[bool_idx]) # [3 4]

数组操作总结

  • ndarray是NumPy的基本数组对象,比列表更适合科学计算
  • 支持多种数组创建方式如zeros,random等
  • 可以进行数学与统计运算,如sum,mean
  • 通过索引和切片可以操作数组元素

NumPy的数组运算是Python科学计算的基石,必须深入学习,才能打下坚实的基础。

总结

在本文中,我们介绍了 Python 数据分析的入门教程,重点介绍了 Numpy 库、Pandas 库、Matplotlib 绘图和 Scikit-Learn 机器学习等方面的内容。现在,让我们来简要总结一下吧!

首先是 Numpy 库。我们了解到 Numpy 是 Python 中一个强大的数值计算库,它提供了多维数组对象以及丰富的数组运算功能。通过 Numpy,我们可以轻松地对数组进行创建、操作和索引,还可以进行各种数学运算和线性代数操作。

接着我们介绍了 Pandas 库。Pandas 是用于数据分析和处理的重要工具,它提供了 DataFrame 对象,使我们能够灵活地处理和分析数据。通过 Pandas,我们可以读取数据集、数据清洗、转换和整合,还可以进行高级数据操作,如数据筛选、排序和分组等。

然后是 Matplotlib 绘图。Matplotlib 是一个功能丰富的绘图库,可以用来创建各种类型的静态、动态和交互式图表。无论是线形图、柱状图、散点图还是饼图,Matplotlib 都能够满足我们的需求,并通过设置样式和标签来美化图表。

最后是 Scikit-Learn 机器学习。Scikit-Learn 是一个强大的机器学习库,提供了多种常用的机器学习算法和工具。通过 Scikit-Learn,我们可以进行数据预处理、特征工程、模型训练和评估等。它支持监督学习、无监督学习和半监督学习等多种学习任务。

总之,通过本文的学习,我们对 Python 数据分析有了更深入的理解。Numpy、Pandas、Matplotlib 和 Scikit-Learn 是我们必不可少的工具,可以帮助我们在数据分析和机器学习领域取得更好的成果。希望本文能够带给大家启发和帮助,让我们一起走进 Python 数据分析的精彩世界吧!

相关文章
|
1月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
159 0
|
1月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
260 0
|
2月前
|
数据采集 数据可视化 数据挖掘
Python数据分析实战:Pandas处理结构化数据的核心技巧
在数据驱动时代,结构化数据是分析决策的基础。Python的Pandas库凭借其高效的数据结构和丰富的功能,成为处理结构化数据的利器。本文通过真实场景和代码示例,讲解Pandas的核心操作,包括数据加载、清洗、转换、分析与性能优化,帮助你从数据中提取有价值的洞察,提升数据处理效率。
142 3
|
16天前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
4月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
509 0
|
2月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
3月前
|
存储 数据挖掘 大数据
基于python大数据的用户行为数据分析系统
本系统基于Python大数据技术,深入研究用户行为数据分析,结合Pandas、NumPy等工具提升数据处理效率,利用B/S架构与MySQL数据库实现高效存储与访问。研究涵盖技术背景、学术与商业意义、国内外研究现状及PyCharm、Python语言等关键技术,助力企业精准营销与产品优化,具有广泛的应用前景与社会价值。
|
3月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
269 0
|
11月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
245 2

推荐镜像

更多