机器学习算法优化

简介: 机器学习算法优化

1 Canopy算法配合初始聚类

k-means算法小结

优点:

  • 1.原理简单(靠近中心点),实现容易
  • 2.聚类效果中上(依赖K的选择)
  • 3.空间复杂度o(N),时间复杂度o(IKN)
N为样本点个数,K为中心点个数,I为迭代次数

缺点:

  • 1.对离群点,噪声敏感 (中心点易偏移)
  • 2.很难发现大小差别很大的簇及进行增量计算
  • 3.结果不一定是全局最优,只能保证局部最优(与K的个数及初值选取有关)

1.1 实现流程

1.2 Canopy算法优缺点

优点:

1.Kmeans对噪声抗干扰较弱,通过Canopy对比,将较小的NumPoint的Cluster直接去掉有利于抗干扰。

2.Canopy选择出来的每个Canopy的centerPoint作为K会更精确。

3.只是针对每个Canopy的内做Kmeans聚类,减少相似计算的数量。

缺点:

1.算法中 T1、T2的确定问题 ,依旧可能落入局部最优解

2 K-means++

其中:

为方便后面表示,把其记为A

kmeans++目的,让选择的质心尽可能的分散

如下图中,如果第一个质心选择在圆心,那么最优可能选择到的下一个点在P(A)这个区域(根据颜色进行划分)

3 二分k-means

实现流程:

  • 1.所有点作为一个簇
  • 2.将该簇一分为二
  • 3.选择能最大限度降低聚类代价函数(也就是误差平方和)的簇划分为两个簇。
  • 4.以此进行下去,直到簇的数目等于用户给定的数目k为止。

隐含的一个原则

因为聚类的误差平方和能够衡量聚类性能,该值越小表示数据点越接近于他们的质心,聚类效果就越好。所以需要对误差平方和最大的簇进行再一次划分,因为误差平方和越大,表示该簇聚类效果越不好,越有可能是多个簇被当成了一个簇,所以我们首先需要对这个簇进行划分。


二分K均值算法可以加速K-means算法的执行速度,因为它的相似度计算少了并且不受初始化问题的影响,因为这里不存在随机点的选取,且每一步都保证了误差最小

4 k-medoids(k-中心聚类算法)

K-medoids和K-means是有区别的,不一样的地方在于中心点的选取

  • K-means中,将中心点取为当前cluster中所有数据点的平均值,对异常点很敏感!
  • K-medoids中,将从当前cluster 中选取到其他所有(当前cluster中的)点的距离之和最小的点作为中心点。

算法流程:


( 1 )总体n个样本点中任意选取k个点作为medoids

( 2 )按照与medoids最近的原则,将剩余的n-k个点分配到当前最佳的medoids代表的类中

( 3 )对于第i个类中除对应medoids点外的所有其他点,按顺序计算当其为新的medoids时,代价函数的值,遍历所有可能,选取代价函数最小时对应的点作为新的medoids

( 4 )重复2-3的过程,直到所有的medoids点不再发生变化或已达到设定的最大迭代次数

( 5 )产出最终确定的k个类

k-medoids对噪声鲁棒性好。

例:当一个cluster样本点只有少数几个,如(1,1)(1,2)(2,1)(1000,1000)。其中(1000,1000)是噪声。如果按照k-means质心大致会处在(1,1)(1000,1000)中间,这显然不是我们想要的。这时k-medoids就可以避免这种情况,他会在(1,1)(1,2)(2,1)(1000,1000)中选出一个样本点使cluster的绝对误差最小,计算可知一定会在前三个点中选取。


k-medoids只能对小样本起作用,样本大,速度就太慢了,当样本多的时候,少数几个噪音对k-means的质心影响也没有想象中的那么重,所以k-means的应用明显比k-medoids多。

5 Kernel k-means

kernel k-means实际上,就是将每个样本进行一个投射到高维空间的处理,然后再将处理后的数据使用普通的k-means算法思想进行聚类。

6 ISODATA

类别数目随着聚类过程而变化;

对类别数会进行合并,分裂,

“合并”:(当聚类结果某一类中样本数太少,或两个类间的距离太近时)

“分裂”:(当聚类结果中某一类的类内方差太大,将该类进行分裂)

7 Mini Batch K-Means

适合大数据的聚类算法


大数据量是什么量级?通常当样本量大于1万做聚类时,就需要考虑选用Mini Batch K-Means算法。


Mini Batch KMeans使用了Mini Batch(分批处理)的方法对数据点之间的距离进行计算。


Mini Batch计算过程中不必使用所有的数据样本,而是从不同类别的样本中抽取一部分样本来代表各自类型进行计算。由于计算样本量少,所以会相应的减少运行时间,但另一方面抽样也必然会带来准确度的下降。


该算法的迭代步骤有两步:


(1)从数据集中随机抽取一些数据形成小批量,把他们分配给最近的质心

(2)更新质心

与Kmeans相比,数据的更新在每一个小的样本集上。对于每一个小批量,通过计算平均值得到更新质心,并把小批量里的数据分配给该质心,随着迭代次数的增加,这些质心的变化是逐渐减小的,直到质心稳定或者达到指定的迭代次数,停止计算。


8 小结

k-means算法优缺点总结


【知道】


优点:

1.原理简单(靠近中心点),实现容易

2.聚类效果中上(依赖K的选择)

3.空间复杂度o(N),时间复杂度o(IKN)

缺点:

1.对离群点,噪声敏感 (中心点易偏移)

2.很难发现大小差别很大的簇及进行增量计算

3.结果不一定是全局最优,只能保证局部最优(与K的个数及初值选取有关)

优化方法【知道】

优化方法 思路
Canopy+kmeans Canopy粗聚类配合kmeans
kmeans++ 距离越远越容易成为新的质心
二分k-means 拆除SSE最大的簇
k-medoids 和kmeans选取中心点的方式不同
kernel kmeans 映射到高维空间
ISODATA 动态聚类,可以更改K值大小
Mini-batch K-Means 大数据集分批聚类


目录
相关文章
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的优化算法及其应用
【10月更文挑战第8天】 本文将探讨深度学习中常用的优化算法,包括梯度下降法、Adam和RMSProp等,介绍这些算法的基本原理与应用场景。通过实例分析,帮助读者更好地理解和应用这些优化算法,提高深度学习模型的训练效率与性能。
102 63
|
5天前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
18 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
1天前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
|
1天前
|
机器学习/深度学习 人工智能 算法
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
11 0
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
|
9天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
4天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
5天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
18 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
4天前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
6天前
|
算法
PID算法原理分析及优化
【10月更文挑战第6天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
17 0