机器学习梯度下降法应用波士顿房价预测

简介: 机器学习梯度下降法应用波士顿房价预测

1 线性回归api介绍

机器学习梯度下降算法:https://blog.csdn.net/ZGL_cyy/article/details/127037949

  • sklearn.linear_model.LinearRegression(fit_intercept=True)
  • 通过正规方程优化
  • 参数
  • fit_intercept:是否计算偏置
  • 属性
  • LinearRegression.coef_:回归系数
  • LinearRegression.intercept_:偏置

sklearn.linear_model.SGDRegressor(loss=“squared_loss”, fit_intercept=True, learning_rate =‘invscaling’, eta0=0.01)

  • SGDRegressor类实现了随机梯度下降学习,它支持不同的loss函数和正则化惩罚项来拟合线性回归模型。
  • 参数:
  • loss:损失类型
  • loss=”squared_loss”: 普通最小二乘法
  • fit_intercept:是否计算偏置
  • learning_rate : string, optional
  • 学习率填充
  • ‘constant’: eta = eta0
  • ‘optimal’: eta = 1.0 / (alpha * (t + t0))
  • ‘invscaling’: eta = eta0 / pow(t, power_t)[default]
  • power_t=0.25:存在父类当中
  • 对于一个常数值的学习率来说,可以使用learning_rate=’constant’ ,并使用eta0来指定学习率。
  • 属性:
  • SGDRegressor.coef_:回归系数
  • SGDRegressor.intercept_:偏置

sklearn提供给我们两种实现的API, 可以根据选择使用

小结

  • 正规方程
  • sklearn.linear_model.LinearRegression()
  • 梯度下降法
  • sklearn.linear_model.SGDRegressor()

2 波士顿房价预测

2.1 案例背景介绍

  • 数据介绍

给定的这些特征,是专家们得出的影响房价的结果属性。我们此阶段不需要自己去探究特征是否有用,只需要使用这些特征。到后面量化很多特征需要我们自己去寻找

2.2 案例分析

回归当中的数据大小不一致,是否会导致结果影响较大。所以需要做标准化处理。

  • 数据分割与标准化处理
  • 回归预测
  • 线性回归的算法效果评估

2.3 回归性能评估

均方误差(Mean Squared Error)MSE)评价机制:

注:yi为预测值, 为真实值

思考:MSE和最小二乘法的区别是?

  • sklearn.metrics.mean_squared_error(y_true, y_pred)
  • 均方误差回归损失
  • y_true:真实值
  • y_pred:预测值
  • return:浮点数结果

2.4 代码实现

2.4.1 正规方程

def linear_model1():
    """
    线性回归:正规方程
    :return:None
    """
    # 1.获取数据
    data = load_boston()
    # 2.数据集划分
    x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)
    # 3.特征工程-标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.fit_transform(x_test)
    # 4.机器学习-线性回归(正规方程)
    estimator = LinearRegression()
    estimator.fit(x_train, y_train)
    # 5.模型评估
    # 5.1 获取系数等值
    y_predict = estimator.predict(x_test)
    print("预测值为:\n", y_predict)
    print("模型中的系数为:\n", estimator.coef_)
    print("模型中的偏置为:\n", estimator.intercept_)
    # 5.2 评价
    # 均方误差
    error = mean_squared_error(y_test, y_predict)
    print("误差为:\n", error)
    return None

2.4.2 梯度下降法

def linear_model2():
    """
    线性回归:梯度下降法
    :return:None
    """
    # 1.获取数据
    data = load_boston()
    # 2.数据集划分
    x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)
    # 3.特征工程-标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.fit_transform(x_test)
    # 4.机器学习-线性回归(特征方程)
    estimator = SGDRegressor(max_iter=1000)
    estimator.fit(x_train, y_train)
    # 5.模型评估
    # 5.1 获取系数等值
    y_predict = estimator.predict(x_test)
    print("预测值为:\n", y_predict)
    print("模型中的系数为:\n", estimator.coef_)
    print("模型中的偏置为:\n", estimator.intercept_)
    # 5.2 评价
    # 均方误差
    error = mean_squared_error(y_test, y_predict)
    print("误差为:\n", error)
    return None

我们也可以尝试去修改学习率

estimator = SGDRegressor(max_iter=1000,learning_rate="constant",eta0=0.1)

此时我们可以通过调参数,找到学习率效果更好的值。

2.5 小结

  • 正规方程和梯度下降法api在真实案例中的使用
  • 线性回归性能评估
  • 均方误差
目录
相关文章
|
2天前
|
机器学习/深度学习 算法 自动驾驶
探索机器学习在图像识别中的应用
【5月更文挑战第1天】 随着人工智能技术的飞速发展,机器学习已成为其最活跃的分支之一。特别是在图像识别领域,机器学习技术已展现出强大的能力与广泛的应用前景。本文将深入探讨机器学习在图像识别中的关键作用,从基础原理到实际应用案例,剖析其背后的算法和模型。同时,我们将讨论当前面临的挑战和未来的发展趋势,为读者提供一个全景式的技术分享。
8 3
|
2天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习在金融欺诈检测中的应用
【4月更文挑战第30天】 随着金融科技的迅猛发展,机器学习技术在金融行业中的应用变得日益广泛。特别是在金融欺诈检测领域,机器学习以其强大的数据处理能力和智能识别功能,正逐渐成为防范和打击金融欺诈的重要工具。本文将深入探讨机器学习在金融欺诈检测中的关键作用,分析其优势及面临的挑战,并提出未来发展趋势。
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在图像识别中的应用与挑战探索机器学习中的自然语言处理技术
【4月更文挑战第30天】 随着人工智能技术的飞速发展,深度学习已经成为计算机视觉领域的核心动力。本文将探讨深度学习在图像识别任务中的关键技术、应用实例以及面临的主要挑战。我们将重点讨论卷积神经网络(CNN)的架构优化、数据增强技术以及迁移学习的策略,并通过具体案例分析其在医疗影像、自动驾驶和面部识别等领域的应用成效。同时,我们也将指出当前模型泛化能力不足、对抗性攻击以及算力资源需求等挑战,并提出潜在的解决方向。 【4月更文挑战第30天】 在人工智能领域,自然语言处理(NLP)是赋予机器理解和响应人类语言能力的关键技术。本文将深入探讨NLP的发展历程、核心技术及其在不同领域的应用案例。我们将从
|
2天前
|
机器学习/深度学习 数据采集 算法
【Python 机器学习专栏】机器学习在医疗诊断中的前沿应用
【4月更文挑战第30天】本文探讨了机器学习在医疗诊断中的应用,强调其在处理复杂疾病和大量数据时的重要性。神经网络、决策树和支持向量机等方法用于医学影像诊断、疾病预测和基因数据分析。Python作为常用工具,简化了模型构建和数据分析。然而,数据质量、模型解释性和伦理法律问题构成挑战,需通过数据验证、可解释性研究及建立规范来应对。未来,机器学习将更深入地影响医疗诊断,带来智能和精准的诊断工具,同时也需跨学科合作推动其健康发展。
|
2天前
|
机器学习/深度学习 自然语言处理 搜索推荐
【Python机器学习专栏】迁移学习在机器学习中的应用
【4月更文挑战第30天】迁移学习是利用已有知识解决新问题的机器学习方法,尤其在数据稀缺或资源有限时展现优势。本文介绍了迁移学习的基本概念,包括源域和目标域,并探讨了其在图像识别、自然语言处理和推荐系统的应用。在Python中,可使用Keras或TensorFlow实现迁移学习,如示例所示,通过预训练的VGG16模型进行图像识别。迁移学习提高了学习效率和性能,随着技术发展,其应用前景广阔。
|
2天前
|
机器学习/深度学习 传感器 自动驾驶
【Python机器学习专栏】深度学习在自动驾驶中的应用
【4月更文挑战第30天】本文探讨了深度学习在自动驾驶汽车中的应用及其对技术发展的推动。深度学习通过模拟神经网络处理数据,用于环境感知、决策规划和控制执行。在环境感知中,深度学习识别图像和雷达数据;在决策规划上,学习人类驾驶行为;在控制执行上,实现精确的车辆控制。尽管面临数据需求、可解释性和实时性挑战,但通过数据增强、规则集成和硬件加速等方法,深度学习将持续优化自动驾驶性能,并在安全性和可解释性上取得进步。
|
2天前
|
机器学习/深度学习 自然语言处理 PyTorch
【Python 机器学习专栏】自然语言处理中的深度学习应用
【4月更文挑战第30天】本文探讨了深度学习在自然语言处理(NLP)中的应用,包括文本分类、情感分析和机器翻译等任务。深度学习的优势在于自动特征学习、强大的表达能力和处理大规模数据的能力。常见模型如RNN、LSTM、GRU、CNN和注意力机制在NLP中发挥作用。Python的TensorFlow、PyTorch、NLTK和SpaCy等工具支持NLP研究。然而,数据稀缺、模型解释性和计算资源需求高等挑战仍待解决。随着技术进步,未来深度学习将进一步推动NLP发展,实现更智能的语言交互。
|
2天前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习专栏】金融数据分析中的机器学习应用
【4月更文挑战第30天】本文探讨了机器学习在金融数据分析中的应用,如股价预测、信用评分、欺诈检测、算法交易和风险管理,并以Python为例展示了如何进行股价预测。通过使用机器学习模型,金融机构能更准确地评估风险、识别欺诈行为并优化交易策略。Python结合scikit-learn库简化了数据分析过程,助力金融从业者提高决策效率。随着技术发展,机器学习在金融领域的影响力将持续增强。
|
2天前
|
机器学习/深度学习 算法 Python
【Python机器学习专栏】文本分类的机器学习应用
【4月更文挑战第30天】文本分类是机器学习中的关键应用,涉及文本预处理、特征提取和模型训练等步骤。常见方法包括基于规则、关键词和机器学习(如朴素贝叶斯、SVM、深度学习)。Python中可使用scikit-learn进行文本分类,例如通过TF-IDF和朴素贝叶斯对新闻数据集进行处理。随着技术发展,未来将深入研究深度学习在文本分类中的应用及多模态数据的利用。
|
2天前
|
机器学习/深度学习 算法 UED
【Python 机器学习专栏】A/B 测试在机器学习项目中的应用
【4月更文挑战第30天】A/B测试在数据驱动的机器学习项目中扮演关键角色,用于评估模型性能、算法改进和特征选择。通过定义目标、划分群组、实施处理、收集数据和分析结果,A/B测试能帮助优化模型和用户体验。Python提供工具如pandas和scipy.stats支持实验实施与分析。注意样本量、随机性、时间因素和多变量分析,确保测试有效性。A/B测试助力于持续改进机器学习项目,实现更好的成果。

热门文章

最新文章