多旋翼无人机组合导航系统-多源信息融合算法(Matlab代码实现)

简介: 多旋翼无人机组合导航系统-多源信息融合算法(Matlab代码实现)

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

多旋翼无人机已经成为了现代航空技术的重要组成部分,其在军事、民用、科学研究等领域都有着广泛的应用。而多旋翼无人机的导航系统则是其能够准确执行任务的关键所在。在现代导航系统中,多源信息融合算法已经成为了一个研究热点,其在提高导航精度、降低误差、增强鲁棒性等方面都有着显著的优势。本文将对多旋翼无人机组合导航系统中的多源信息融合算法进行研究和讨论。

多源信息融合算法是指将来自不同传感器的信息进行整合,以得到更加准确、可靠的结果的一种算法。在多旋翼无人机的导航系统中,常用的传感器包括GPS、陀螺仪、加速度计、磁力计等。这些传感器各自具有一定的精度和误差,因此需要通过多源信息融合算法来提高导航精度和鲁棒性。

在多源信息融合算法中,常用的方法包括卡尔曼滤波、粒子滤波、扩展卡尔曼滤波等。其中,卡尔曼滤波是一种基于状态空间模型的最优估计算法,其具有计算简单、实时性好等优点,因此在多旋翼无人机的导航系统中得到了广泛应用。扩展卡尔曼滤波则是一种更加复杂的算法,其能够处理非线性系统,因此在一些特定的应用场景中也有着重要的作用。

除了传感器信息的融合外,多旋翼无人机的导航系统还需要考虑其他因素的影响,例如地形、气象等。因此,在多源信息融合算法中,还需要考虑这些因素的影响,并进行相应的处理。例如,在考虑地形因素时,可以采用地形匹配算法来对无人机的位置进行修正,以提高导航精度和鲁棒性。

总之,多源信息融合算法在多旋翼无人机的导航系统中具有重要的作用,能够提高导航精度、降低误差、增强鲁棒性等方面的性能。因此,在多旋翼无人机的设计和应用中,多源信息融合算法的研究和应用具有重要的意义。

📣 部分代码

%%% Designed and Developed by Mohammad Dehghani and Pavel Trojovský %%%function [lowerbound,upperbound,dimension,fitness] = fun_info(F)switch F    case 'F1'        fitness = @F1;        lowerbound=-100;        upperbound=100;        dimension=30;            case 'F2'        fitness = @F2;        lowerbound=-10;        upperbound=10;        dimension=30;            case 'F3'        fitness = @F3;        lowerbound=-100;        upperbound=100;        dimension=30;            case 'F4'        fitness = @F4;        lowerbound=-100;        upperbound=100;        dimension=30;            case 'F5'        fitness = @F5;        lowerbound=-30;        upperbound=30;        dimension=30;            case 'F6'        fitness = @F6;        lowerbound=-100;        upperbound=100;        dimension=30;            case 'F7'        fitness = @F7;        lowerbound=-1.28;        upperbound=1.28;        dimension=30;            case 'F8'        fitness = @F8;        lowerbound=-500;        upperbound=500;        dimension=30;            case 'F9'        fitness = @F9;        lowerbound=-5.12;        upperbound=5.12;        dimension=30;            case 'F10'        fitness = @F10;        lowerbound=-32;        upperbound=32;        dimension=30;            case 'F11'        fitness = @F11;        lowerbound=-600;        upperbound=600;        dimension=30;            case 'F12'        fitness = @F12;        lowerbound=-50;        upperbound=50;        dimension=30;            case 'F13'        fitness = @F13;        lowerbound=-50;        upperbound=50;        dimension=30;            case 'F14'        fitness = @F14;        lowerbound=-65.536;        upperbound=65.536;        dimension=2;            case 'F15'        fitness = @F15;        lowerbound=-5;        upperbound=5;        dimension=4;            case 'F16'        fitness = @F16;        lowerbound=-5;        upperbound=5;        dimension=2;            case 'F17'        fitness = @F17;        lowerbound=[-5,0];        upperbound=[10,15];        dimension=2;            case 'F18'        fitness = @F18;        lowerbound=-2;        upperbound=2;        dimension=2;            case 'F19'        fitness = @F19;        lowerbound=0;        upperbound=1;        dimension=3;            case 'F20'        fitness = @F20;        lowerbound=0;        upperbound=1;        dimension=6;                 case 'F21'        fitness = @F21;        lowerbound=0;        upperbound=10;        dimension=4;                case 'F22'        fitness = @F22;        lowerbound=0;        upperbound=10;        dimension=4;                case 'F23'        fitness = @F23;        lowerbound=0;        upperbound=10;        dimension=4;            endend% F1function R = F1(x)R=sum(x.^2);end% F2function R = F2(x)R=sum(abs(x))+prod(abs(x));end% F3function R = F3(x)dimension=size(x,2);R=0;for i=1:dimension    R=R+sum(x(1:i))^2;endend% F4function R = F4(x)R=max(abs(x));end% F5function R = F5(x)dimension=size(x,2);R=sum(100*(x(2:dimension)-(x(1:dimension-1).^2)).^2+(x(1:dimension-1)-1).^2);end% F6function R = F6(x)R=sum(floor((x+.5)).^2);end% F7function R = F7(x)dimension=size(x,2);R=sum([1:dimension].*(x.^4))+rand;end% F8function R = F8(x)R=sum(-x.*sin(sqrt(abs(x))));end% F9function R = F9(x)dimension=size(x,2);R=sum(x.^2-10*cos(2*pi.*x))+10*dimension;end% F10function R = F10(x)dimension=size(x,2);R=-20*exp(-.2*sqrt(sum(x.^2)/dimension))-exp(sum(cos(2*pi.*x))/dimension)+20+exp(1);end% F11function R = F11(x)dimension=size(x,2);R=sum(x.^2)/4000-prod(cos(x./sqrt([1:dimension])))+1;end% F12function R = F12(x)dimension=size(x,2);R=(pi/dimension)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dimension-1)+1)./4).^2).*...(1+10.*((sin(pi.*(1+(x(2:dimension)+1)./4)))).^2))+((x(dimension)+1)/4)^2)+sum(Ufun(x,10,100,4));end% F13function R = F13(x)dimension=size(x,2);R=.1*((sin(3*pi*x(1)))^2+sum((x(1:dimension-1)-1).^2.*(1+(sin(3.*pi.*x(2:dimension))).^2))+...((x(dimension)-1)^2)*(1+(sin(2*pi*x(dimension)))^2))+sum(Ufun(x,5,100,4));end% F14function R = F14(x)aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];for j=1:25    bS(j)=sum((x'-aS(:,j)).^6);endR=(1/500+sum(1./([1:25]+bS))).^(-1);end% F15function R = F15(x)aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;R=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);end% F16function R = F16(x)R=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);end% F17function R = F17(x)R=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;end% F18function R = F18(x)R=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...    (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));end% F19function R = F19(x)aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];R=0;for i=1:4    R=R-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));endend% F20function R = F20(x)aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];cH=[1 1.2 3 3.2];pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;....2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];R=0;for i=1:4    R=R-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));endend% F21function R = F21(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];R=0;for i=1:5    R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endend% F22function R = F22(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];R=0;for i=1:7    R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endend% F23function R = F23(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];R=0;for i=1:10    R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endendfunction R=Ufun(x,a,k,m)R=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));end

⛳️ 运行结果

image.gif编辑

image.gif编辑

🔗 参考文献

[1]袁克非.组合导航系统多源信息融合关键技术研究[D].哈尔滨工程大学[2023-09-19].DOI:CNKI:CDMD:1.1012.518746.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合


相关文章
|
2月前
|
数据采集 监控 安全
厂区地图导航制作:GIS技术与路径导航算法融合
在智能化、数字化时代,GIS技术为厂区的运营管理带来了革命性变化。本文探讨了如何利用GIS技术,通过数据采集、地图绘制、路径规划、位置定位和信息查询等功能,打造高效、精准的智能厂区地图导航系统,提升企业的竞争力和管理水平。
83 0
厂区地图导航制作:GIS技术与路径导航算法融合
|
1月前
|
机器学习/深度学习 存储 算法
基于Actor-Critic(A2C)强化学习的四旋翼无人机飞行控制系统matlab仿真
基于Actor-Critic强化学习的四旋翼无人机飞行控制系统,通过构建策略网络和价值网络学习最优控制策略。MATLAB 2022a仿真结果显示,该方法在复杂环境中表现出色。核心代码包括加载训练好的模型、设置仿真参数、运行仿真并绘制结果图表。仿真操作步骤可参考配套视频。
68 0
|
7月前
|
机器学习/深度学习 算法 计算机视觉
[YOLOv8/YOLOv7/YOLOv5系列算法改进NO.5]改进特征融合网络PANET为BIFPN(更新添加小目标检测层yaml)
本文介绍了改进YOLOv5以解决处理复杂背景时可能出现的错漏检问题。
287 5
|
5月前
|
机器学习/深度学习 数据采集 算法
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机回归模型(SVR算法)项目实战
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机回归模型(SVR算法)项目实战
|
5月前
|
机器学习/深度学习 数据采集 算法
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机分类模型(SVC算法)项目实战
Python实现ISSA融合反向学习与Levy飞行策略的改进麻雀优化算法优化支持向量机分类模型(SVC算法)项目实战
|
7月前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
7月前
|
人工智能 算法 测试技术
论文介绍:进化算法优化模型融合策略
【5月更文挑战第3天】《进化算法优化模型融合策略》论文提出使用进化算法自动化创建和优化大型语言模型,通过模型融合提升性能并减少资源消耗。实验显示,这种方法在多种基准测试中取得先进性能,尤其在无特定任务训练情况下仍能超越参数更多模型。同时,该技术成功应用于创建具有文化意识的日语视觉-语言模型。然而,模型融合可能产生逻辑不连贯响应和准确性问题,未来工作将聚焦于图像扩散模型、自动源模型选择及生成自我改进的模型群体。[论文链接: https://arxiv.org/pdf/2403.13187.pdf]
183 1
|
7月前
|
机器学习/深度学习 算法 数据挖掘
SciPy与机器学习:融合科学计算与智能算法
【4月更文挑战第17天】本文探讨了如何结合SciPy与机器学习,SciPy作为Python科学计算库,为机器学习提供数学基础和工具。在机器学习中,SciPy用于特征选择(如ANOVA和SVD)、聚类(K-Means和层次聚类)、优化(梯度下降和牛顿法)以及信号处理。通过与scikit-learn等机器学习框架结合,实现高效数据处理和模式识别。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
226 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
142 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章