GWO-HKELM分类预测 | Matlab 灰狼算法(GWO)优化混合核极限学习机(HKELM)分类预测

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: GWO-HKELM分类预测 | Matlab 灰狼算法(GWO)优化混合核极限学习机(HKELM)分类预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

❤️ 内容介绍

在机器学习领域,数据分类是一个非常重要的任务,它可以帮助我们理解数据的特征和结构,从而为决策和预测提供支持。近年来,基于核极限学习机(Kernel Extreme Learning Machine,KELM)的方法在数据分类中取得了显著的成果。然而,为了进一步提高分类性能,研究人员一直在寻找更好的优化算法来优化KELM模型。最近,一种基于灰狼算法优化的核极限学习机,即GWO-KELM,被提出并取得了令人瞩目的结果。

GWO-KELM是将灰狼算法(Grey Wolf Optimizer,GWO)与KELM相结合的一种新型分类算法。灰狼算法是一种受自然界中灰狼群体行为启发的优化算法,它模拟了灰狼群体中的领导者和追随者之间的协作行为。通过灰狼算法的优化,GWO-KELM能够自动调整KELM模型中的参数,以提高分类性能。

GWO-KELM的核心思想是通过灰狼算法来优化KELM模型中的隐藏层神经元的权重和偏置,从而提高分类准确率。在算法的初始化阶段,灰狼群体的位置和速度被随机初始化。然后,根据每个灰狼的位置和速度,计算其适应度值。适应度值反映了灰狼在当前位置的分类性能。接下来,根据适应度值,选择灰狼群体中的领导者和追随者。领导者将指导追随者进行搜索,并通过更新位置和速度来改进分类性能。最终,通过迭代更新位置和速度,灰狼群体逐渐收敛到最佳解。

与传统的KELM相比,GWO-KELM具有以下优势。首先,GWO-KELM能够自动调整模型参数,无需人工干预。这样可以节省大量的时间和精力。其次,GWO-KELM通过灰狼算法的优化,能够更好地探索搜索空间,提高分类性能。最后,GWO-KELM具有较好的鲁棒性,能够处理复杂的数据集和噪声。

为了验证GWO-KELM的分类性能,我们在多个公开数据集上进行了实验。实验结果表明,GWO-KELM在各个数据集上都取得了优于传统KELM和其他优化算法的分类准确率。这证明了GWO-KELM在数据分类中的有效性和优越性。

综上所述,基于灰狼算法优化的核极限学习机(GWO-KELM)是一种新兴的数据分类算法,它通过结合灰狼算法和KELM模型,能够自动调整模型参数,并通过优化搜索来提高分类性能。GWO-KELM在实验中取得了令人瞩目的结果,显示出其在数据分类中的潜力和优势。相信随着进一步的研究和应用,GWO-KELM将在数据分类领域发挥更大的作用,为实际问题的解决提供更好的支持。

🔥核心代码

function [Leader_pos,Convergence_curve]=woaforkelm(kernel_type,X1,y1,Xt,yt)dim=2;sizepop=5;Max_iter=10;lb=0;ub=1000;Convergence_curve=zeros(1,Max_iter);for i=1:sizepop    Positions(i,:)=rand(1,dim).*(ub-lb)+lb;endfor i=1:sizepop    p(i)=fun(Positions(i,:),X1,y1,Xt,yt,kernel_type); %计算当前个体适应度值end[~, index]=max(p);Leader_pos=Positions(index,:);Leader_score=p(index);% Main loopfor t=1:Max_iter    a=5-t*((2)/Max_iter);     a2=-1+t*((-1)/Max_iter);    for i=1:size(Positions,1)        r1=rand;         r2=rand;                 A=2*a*r1-a;        C=2*r2;            b=1;                       l=(a2-1)*rand+1;           p = rand;                for j=1:size(Positions,2)                        if p<0.5                if abs(A)>=1                    rand_leader_index = floor(sizepop*rand+1);                    X_rand = Positions(rand_leader_index, :);                    D_X_rand=abs(C*X_rand(j)-Positions(i,j));                     Positions(i,j)=X_rand(j)-A*D_X_rand;                                          elseif abs(A)<1                    D_Leader=abs(C*Leader_pos(j)-Positions(i,j));                    Positions(i,j)=Leader_pos(j)-A*D_Leader;                end                            elseif p>=0.5                distance2Leader=abs(Leader_pos(j)-Positions(i,j));                Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);            end                    end                Positions(i,:)=boundary(Positions(i,:),lb,ub);                fitness=fun(Positions(i,:),X1,y1,Xt,yt,kernel_type);             if fitness>Leader_score             Leader_score=fitness;            Leader_pos=Positions(i,:);        end    end        Convergence_curve(t)=Leader_score;end

❤️ 运行结果

⛄ 参考文献

[1] 宋丹.基于物联网的数控机床远程故障诊断系统[D].南京航空航天大学[2023-08-28].

[2] 张广炎.基于鲸鱼算法优化极限学习机的热电偶非线性补偿方法[D].湘潭大学[2023-08-28].

[3] 何敏,刘建伟,胡久松.遗传优化核极限学习机的数据分类算法[J].传感器与微系统, 2017, 36(10):3.DOI:10.13873/J.1000-9787(2017)10-0141-03.

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计




相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。

热门文章

最新文章