【图像配准】基于SSD、SAD、NCC算法实现三维图像立体配准和融合附matlab代码

简介: 【图像配准】基于SSD、SAD、NCC算法实现三维图像立体配准和融合附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

❤️ 内容介绍

在计算机视觉领域,三维图像立体配准和融合是一项重要的任务。它涉及将多个视角下获取的图像进行配准,以获得一个准确的三维重建结果。本文将介绍基于SSD(Sum of Squared Differences)、SAD(Sum of Absolute Differences)和NCC(Normalized Cross Correlation)算法实现三维图像立体配准和融合的方法。

首先,我们需要了解什么是三维图像立体配准和融合。立体配准是指将多个视角下获取的图像进行对齐,以消除视角差异和图像畸变,从而得到一个准确的三维场景。融合是指将配准后的图像进行融合,以生成一个完整的三维重建结果。

SSD、SAD和NCC是三种常用的图像相似度度量方法,它们可以用于计算图像之间的相似度。在三维图像立体配准中,我们可以利用这些相似度度量方法来评估图像之间的差异,并找到最佳的配准变换参数。

SSD算法通过计算两个图像之间对应像素的差值的平方和来度量它们的相似度。具体而言,对于两个图像I和J,它们的SSD值可以通过以下公式计算:

SSD(I, J) = Σ(I(x, y) - J(x, y))^2

其中,I(x, y)和J(x, y)分别表示图像I和J在像素位置(x, y)处的像素值。SSD值越小,表示两个图像之间的差异越小,相似度越高。

SAD算法与SSD算法类似,但它使用的是两个图像之间对应像素的差值的绝对值之和来度量它们的相似度。具体而言,对于两个图像I和J,它们的SAD值可以通过以下公式计算:

SAD(I, J) = Σ|I(x, y) - J(x, y)|

与SSD算法相比,SAD算法更加鲁棒,对于图像中的噪声和畸变有更好的容忍度。

NCC算法通过计算两个图像之间对应像素的互相关系数来度量它们的相似度。具体而言,对于两个图像I和J,它们的NCC值可以通过以下公式计算:

NCC(I, J) = Σ(I(x, y) * J(x, y)) / √(ΣI(x, y)^2 * ΣJ(x, y)^2)

NCC值的范围在-1到1之间,值越接近1表示两个图像之间的相似度越高。

在三维图像立体配准和融合中,我们可以利用SSD、SAD和NCC算法来评估不同视角下的图像之间的相似度,并找到最佳的配准变换参数。一般来说,我们可以通过遍历不同的配准参数组合,并计算它们与参考图像之间的相似度来找到最佳的配准结果。

在获得最佳的配准结果后,我们可以将配准后的图像进行融合,以生成一个完整的三维重建结果。融合可以通过简单的像素平均或更复杂的图像融合算法来实现。

总结起来,基于SSD、SAD和NCC算法实现三维图像立体配准和融合是一项重要的任务。这些算法可以帮助我们评估图像之间的相似度,并找到最佳的配准变换参数。通过配准和融合,我们可以获得一个准确的三维重建结果,为计算机视觉和图像处理领域的研究和应用提供基础。

🔥核心代码

%function StereoMatching() %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % This function consits of three methods for stereo matching (SAD,SSD,NCC). % Usage  %       1. A input dialog will appear for setting Window Size. Set a %          number bigger than 2, and click OK button. %       2. Wait for some seconds. Then, you can see the results of SAD, SSD and %          NCC stereo mathing in order. % %       You can also compare the results by changing window size !  % %          InYeop,Jang(20082044), Dept.of Mechatronics, GIST %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function StereoMatching prompt = {'Enter window size:'}; dlg_title = 'Input for setting window size'; num_lines = 1; def = {'9'};  answer=inputdlg(prompt,dlg_title,num_lines,def); winSize = str2double(answer);  if(winSize>2)     fprintf(1,'Loading Images....\n');     imL=rgb2gray(imread('imL.jpg'));     imL=double(imL);     imR=rgb2gray(imread('imR.jpg'));     imR=double(imR);     %groundtruth=imread('disp2.pgm');     %groundtruth=double(groundtruth);    figure    subplot(2,3,1); imshow('imL.jpg'); title('左视角');    subplot(2,3,3); imshow('imR.jpg'); title('右视角');            fprintf(1,'Now Processing SAD based Stereo Matching....\n');     [dispMap_SAD]=StereoMatchingSAD(imL,imR,winSize,0,52);     dispMap1=dispMap_SAD;     %figure('Name','SAD','NumberTitle','off');      subplot(2,3,4); imshow(dispMap1,[0 52]);title('SAD算法');    %fprintf(1,'SAD RMSE : %f\n',sqrt( (mean( dispMap)-groundtruth).^2));     fprintf(1,'Now Processing SSD based Stereo Matching....\n');     [dispMap_SSD]=StereoMatchingSSD(imL,imR,winSize,0,52);     dispMap2=dispMap_SSD;     %figure('Name','SSD','NumberTitle','off');     subplot(2,3,5); imshow(dispMap2,[0 52]);  title('SSD算法');         fprintf(1,'Now Processing NCC based Stereo Matching....\n');     [dispMap_NCC]=StereoMatchingNCC(imL,imR,winSize,0,52);     dispMap3=dispMap_NCC;     %figure('Name','NCC','NumberTitle','off');      subplot(2,3,6);  imshow(dispMap3,[0 52]);  title('NCC算法');else     fprintf(1,'\nYou must set window-size integer bigger than 2!!!!\n'); end

❤️ 运行结果

⛄ 参考文献

[1] 彭鳒侨,丘红英,董伟强,等.基于"9点3面"配准方案的[PT+CT]异机三维图像融合实验[J].中国医疗器械信息, 2011, 017(006):1-5.DOI:10.3969/j.issn.1006-6586.2011.06.001.

[2] 彭鳒侨,鞠向阳,白波,等.基于"9点3面"配准方案的CT+MR异机三维图像融合研究[J].中国临床解剖学杂志, 2011, 29(4):5.DOI:CNKI:SUN:ZLJZ.0.2011-04-020.

[3] 卢欣龙.基于DM6467的图像配准和融合算法的研究[D].南京理工大学[2023-09-04].

[4] 宋毅,崔平远,居鹤华.一种图像匹配中SSD和NCC算法的改进[J].计算机工程与应用, 2006, 42(2):42-44.DOI:10.3321/j.issn:1002-8331.2006.02.013.

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计





相关文章
|
30天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
4月前
|
机器学习/深度学习 人工智能 算法
【MM2024】面向 StableDiffusion 的多目标图像编辑算法 VICTORIA
阿里云人工智能平台 PAI 团队与华南理工大学合作在国际多媒体顶级会议 ACM MM2024 上发表 VICTORIA 算法,这是一种面向 StableDiffusion 的多目标图像编辑算法。VICTORIA 通过文本依存关系来修正图像编辑过程中的交叉注意力图,从而确保关系对象的一致性,支持用户通过修改描述性提示一次性编辑多个目标。
|
4月前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
5月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
6月前
|
算法 前端开发 计算机视觉
基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现
基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现
66 0
|
6月前
|
自然语言处理 并行计算 算法
基于均值坐标(Mean-Value Coordinates)的图像融合算法的具体实现
基于均值坐标(Mean-Value Coordinates)的图像融合算法的具体实现
62 0
|
30天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
144 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
1天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。