程序示例精选
Python相片图片编辑工具-翻转旋转亮度磨皮裁剪添加文字
如需安装运行环境或远程调试,可点击右边博主头像或昵称进入个人主页查看博主联系方式,由专业技术人员远程协助!
前言
这篇博客针对<<Python相片图片编辑工具-翻转旋转亮度磨皮裁剪添加文字>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。
文章目录
一、所需工具软件
二、使用步骤
1. 引入库
2. 识别图像
3. 运行结果
三、在线协助
一、所需工具软件
1. Pycharm, Python
2. Qt, OpenCV
二、使用步骤
1.引入库
代码如下(示例):
from PyQt5 import QtWidgets from PyQt5 import QtWidgets, QtCore, QtGui from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtCore import * from PyQt5.QtWidgets import QApplication, QWidget
编辑
2.识别图像特征
代码如下(示例):
defdetect(save_img=False): source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( ('rtsp://', 'rtmp://', 'http://')) # Directories save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run (save_dir / 'labels'if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir# Initialize set_logging() device = select_device(opt.device) half = device.type != 'cpu'# half precision only supported on CUDA# Load model model = attempt_load(weights, map_location=device) # load FP32 model stride = int(model.stride.max()) # model stride imgsz = check_img_size(imgsz, s=stride) # check img_sizeif half: model.half() # to FP16# Second-stage classifier classify = Falseif classify: modelc = load_classifier(name='resnet101', n=2) # initialize modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval() # Set Dataloader vid_path, vid_writer = None, Noneif webcam: view_img = check_imshow() cudnn.benchmark = True# set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride) else: save_img = True dataset = LoadImages(source, img_size=imgsz, stride=stride) # Get names and colors names = model.module.names ifhasattr(model, 'module') else model.names colors = [[random.randint(0, 255) for _ inrange(3)] for _ in names] # Run inferenceif device.type != 'cpu': model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once t0 = time.time() for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0# 0 - 255 to 0.0 - 1.0if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = model(img, augment=opt.augment)[0] # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() # Apply Classifierif classify: pred = apply_classifier(pred, modelc, img, im0s) # Process detectionsfor i, det inenumerate(pred): # detections per imageif webcam: # batch_size >= 1 p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count else: p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # img.jpg txt_path = str(save_dir / 'labels' / p.stem) + (''if dataset.mode == 'image'elsef'_{frame}') # img.txt s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwhiflen(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Write resultsfor *xyxy, conf, cls inreversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label formatwithopen(txt_path + '.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if save_img or view_img: # Add bbox to image label = f'{names[int(cls)]}{conf:.2f}' plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) # Print time (inference + NMS)print(f'{s}Done. ({t2 - t1:.3f}s)') # Save results (image with detections)if save_img: if dataset.mode == 'image': cv2.imwrite(save_path, im0) else: # 'video'if vid_path != save_path: # new video vid_path = save_path ifisinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer fourcc = 'mp4v'# output video codec fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) vid_writer.write(im0) if save_txt or save_img: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}"if save_txt else''print(f"Results saved to {save_dir}{s}") print(f'Done. ({time.time() - t0:.3f}s)') print(opt) check_requirements() with torch.no_grad(): if opt.update: # update all models (to fix SourceChangeWarning)for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: detect() strip_optimizer(opt.weights) else: detect()
编辑
3. 运行结果如下
编辑
三、在线协助:
如需安装运行环境或远程调试, 可点击右边 博主头像 或 昵称 , 进入个人主页查看博主联系方式 ,由专业技术人员远程协助!
1)远程安装运行环境,代码调试
2)Qt, C++, Python入门指导
3)界面美化
4)软件制作
博主推荐文章:python人脸识别统计人数qt窗体-CSDN博客
博主推荐文章:Python Yolov5火焰烟雾识别源码分享-CSDN博客
Python OpenCV识别行人入口进出人数统计_python识别人数-CSDN博客
个人博客主页:alicema1111的博客_CSDN博客-Python,C++,网页领域博主
博主所有文章点这里:alicema1111的博客_CSDN博客-Python,C++,网页领域博主