Python+Qt指纹录入识别考勤系统

简介: 这篇博客针对<<Python+Qt指纹录入识别考勤系统>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。

程序示例精选

Python+Qt指纹录入识别考勤系统

如需安装运行环境或远程调试,可点击右边主头像昵称进入个人主页查看博主联系方式,由专业技术人员远程协助!


前言

这篇博客针对<<Python+Qt指纹录入识别考勤系统>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。


文章目录

一、所需工具软件

二、使用步骤

1. 引入库

2. 识别图像特征

3. 运行结果

三、在线协助

一、所需工具软件

1. Pycharm, Python

2. Qt, OpenCV

二、使用步骤

1.引入库

代码如下(示例):

# coding:utf-8
import sys
import os
import csv
import cv2
import record
import name
from PyQt5 import QtWidgets
from PyQt5 import QtWidgets, QtCore, QtGui
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
from shutil import copyfile
from sys import exit
import os
from login import *
from register import *

image.gif

image.gif编辑

2.识别图像特征

代码如下(示例):

name=f.read()
        print("f",name)
        f.close()
        # 均值哈希算法
        def aHash(img):
            # 缩放为8*8
            img = cv2.resize(img, (8, 8), interpolation=cv2.INTER_CUBIC)
            # 转换为灰度图
            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # s为像素和初值为0,hash_str为hash值初值为''
            s = 0
            hash_str = ''
            # 遍历累加求像素和
            for i in range(8):
                for j in range(8):
                    s = s + gray[i, j]
            # 求平均灰度
            avg = s / 64
            # 灰度大于平均值为1相反为0生成图片的hash值
            for i in range(8):
                for j in range(8):
                    if gray[i, j] > avg:
                        hash_str = hash_str + '1'
                    else:
                        hash_str = hash_str + '0'
            return hash_str
        # 差值感知算法
        def dHash(img):
            # 缩放8*8
            img = cv2.resize(img, (9, 8), interpolation=cv2.INTER_CUBIC)
            # 转换灰度图
            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            hash_str = ''
            # 每行前一个像素大于后一个像素为1,相反为0,生成哈希
            for i in range(8):
                for j in range(8):
                    if gray[i, j] > gray[i, j + 1]:
                        hash_str = hash_str + '1'
            return hash_str
        # Hash值对比
        def cmpHash(hash1, hash2):
            n = 0
            # hash长度不同则返回-1代表传参出错
            if len(hash1) != len(hash2):
                return -1
            # 遍历判断
            for i in range(len(hash1)):
                # 不相等则n计数+1,n最终为相似度
                if hash1[i] != hash2[i]:
                    n = n + 1
            return n
        import os
        path = "fingerDataBase/"
        file_list = os.listdir(path)
        for file in file_list:
            img1 = cv2.imread('temp/new.jpg')
            BasePath="fingerDataBase/" + str(file)
            print("BasePath: ", BasePath)
            img2 = cv2.imread(BasePath)
            print("img2: ",img2)
            hash1 = aHash(img1)
            hash1 = dHash(img1)
            hash2 = dHash(img2)
            print(hash1)
            print(hash2)
            n = cmpHash(hash1, hash2)
            print("n",n)
            print('差值哈希算法相似度:' + str(n))
            result='相似度:' + str(100-n)+", 通过"

image.gif

3.运行结果如下

image.gif


三、在线协助:

如需安装运行环境或远程调试, 可点击右边 主头像 昵称 进入个人主页查看博主联系方式 ,由专业技术人员远程协助!
1)远程安装运行环境,代码调试
2)Qt, C++, Python入门指导
3)界面美化
4)软件制作


博主推荐文章:python人脸识别统计人数qt窗体-CSDN博客

博主推荐文章:Python Yolov5火焰烟雾识别源码分享-CSDN博客

                        Python OpenCV识别行人入口进出人数统计_python识别人数-CSDN博客

个人博客主页:alicema1111的博客_CSDN博客-Python,C++,网页领域博主

博主所有文章点这里:alicema1111的博客_CSDN博客-Python,C++,网页领域博主


相关文章
|
1月前
|
机器学习/深度学习 传感器 存储
使用 Python 实现智能地震预警系统
使用 Python 实现智能地震预警系统
115 61
|
15天前
|
弹性计算 数据管理 数据库
从零开始构建员工管理系统:Python与SQLite3的完美结合
本文介绍如何使用Python和Tkinter构建一个图形界面的员工管理系统(EMS)。系统包括数据库设计、核心功能实现和图形用户界面创建。主要功能有查询、添加、删除员工信息及统计员工数量。通过本文,你将学会如何结合SQLite数据库进行数据管理,并使用Tkinter创建友好的用户界面。
从零开始构建员工管理系统:Python与SQLite3的完美结合
|
8天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
36 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
8天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
44 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
19天前
|
机器学习/深度学习 数据采集 存储
使用Python实现智能农业灌溉系统的深度学习模型
使用Python实现智能农业灌溉系统的深度学习模型
84 6
|
23天前
|
机器学习/深度学习 数据采集 算法框架/工具
使用Python实现智能生态系统监测与保护的深度学习模型
使用Python实现智能生态系统监测与保护的深度学习模型
73 4
|
1月前
|
机器学习/深度学习 API 计算机视觉
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
26 2
|
1月前
|
机器学习/深度学习 存储 算法
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
30 1
|
1月前
|
Python
Python实现系统基础信息
Python实现系统基础信息
32 0
|
1月前
|
机器学习/深度学习 缓存 数据可视化
基于Python_opencv的车牌识别系统
基于Python_opencv的车牌识别系统
33 0