多元回归预测 | Matlab 基于卷积神经网络-长短时记忆网络(CNN-LSTM)的数据回归预测

简介: 多元回归预测 | Matlab 基于卷积神经网络-长短时记忆网络(CNN-LSTM)的数据回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

随着可再生能源的快速发展,风力发电作为一种清洁、可持续的能源形式,正在成为全球能源转型的重要组成部分。然而,由于风力发电的不稳定性和不可控性,准确预测风电功率对于电力系统的稳定运行和电力市场的合理调度至关重要。因此,研究如何有效预测风电功率成为了一个热门的课题。

近年来,深度学习技术在各个领域都取得了显著的成果,其中卷积神经网络(CNN)和长短记忆网络(LSTM)被广泛应用于时间序列数据的建模和预测。CNN适用于提取时间序列数据中的空间特征,而LSTM则能够捕捉时间序列数据中的长期依赖关系。因此,结合CNN和LSTM可以充分利用时间序列数据中的空间和时间信息,提高风电功率预测的准确性。

在风电功率预测中,通常会涉及多个输入变量,如风速、风向、温度等。这些输入变量之间存在复杂的关系,需要通过合适的模型来进行建模和预测。通过使用CNN-LSTM模型,我们可以将多个输入变量作为模型的输入,并通过卷积层和LSTM层来提取和学习输入变量之间的特征和关系。最后,通过全连接层将学习到的特征映射到输出层,实现对风电功率的回归预测。

在实际应用中,我们可以使用历史风电功率数据和对应的多个输入变量数据作为训练集,通过CNN-LSTM模型进行训练。在训练过程中,我们可以使用适当的损失函数,如均方误差(MSE),来衡量预测值和真实值之间的差异,并通过优化算法,如随机梯度下降(SGD),来调整模型参数,使预测结果逐渐接近真实值。在模型训练完成后,我们可以使用测试集来评估模型的性能,并对未来的风电功率进行预测。

通过基于卷积神经网络结合长短记忆网络CNN-LSTM实现风电功率多输入单输出回归预测,我们可以充分利用时间序列数据中的空间和时间信息,提高风电功率预测的准确性。这种方法不仅可以帮助电力系统实现稳定运行和电力市场的合理调度,还可以为可再生能源的开发和利用提供重要的决策依据。未来,我们可以进一步研究和改进这种方法,以适应不同的风电场景和需求,推动风电行业的发展和进步。

总结起来,基于卷积神经网络结合长短记忆网络CNN-LSTM实现风电功率多输入单输出回归预测是一种有效的方法。通过充分利用时间序列数据中的空间和时间信息,我们可以提高风电功率预测的准确性,为电力系统的稳定运行和电力市场的合理调度提供有力支持。这一方法的应用前景广阔,将为可再生能源的发展和利用带来重要的推动作用。

核心代码

%% Bounded Time-History API Example:% The following single Frontend API can be called from the% command-line directly.% Only, ensure you call the path fix firstsu; % path fix%% Front-end for viewing the finite bounds of the %% available COVID-19 data time history of a country-codeccode = "WD";dTime = time_histbnds(ccode);% the output, dTime is a struture holding: % the begin date and last date of the logged datafprintf("Min Date:%s\n",dTime.begin);fprintf("Max Date:%s\n",dTime.end);

⛄ 运行结果


⛄ 参考文献

[1] 姚越,刘达.基于注意力机制的卷积神经网络-长短期记忆网络的短期风电功率预测[J].现代电力, 2022(002):039.

[2] 金宁,皮茂正,严珂.基于WCNN-ALSTM的太阳辐照度时间序列的预测方法:CN202011509734.4[P].CN112434891A[2023-08-23].

[3] 李卓,叶林,戴斌华,等.基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法[J].高电压技术, 2022(6):2117-2127.

[4] 刘旭东,王洪烨,叶强,等.一种基于多通道卷积神经网络和时间卷积网络的短期风电功率预测方法:CN202011208966.6[P].CN112365040A[2023-08-23].

[5] 丁维.基于时间卷积神经网络的风电功率短期预测研究[J].[2023-08-23].

[6] 景惠甜,韩丽,高志宇.基于卷积神经网络特征提取的风电功率爬坡预测[J].电力系统自动化, 2021, 45(4):8.DOI:10.7500/AEPS20200227005.


⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合
相关文章
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
26天前
|
机器学习/深度学习 存储 自然语言处理
从理论到实践:如何使用长短期记忆网络(LSTM)改善自然语言处理任务
【10月更文挑战第7天】随着深度学习技术的发展,循环神经网络(RNNs)及其变体,特别是长短期记忆网络(LSTMs),已经成为处理序列数据的强大工具。在自然语言处理(NLP)领域,LSTM因其能够捕捉文本中的长期依赖关系而变得尤为重要。本文将介绍LSTM的基本原理,并通过具体的代码示例来展示如何在实际的NLP任务中应用LSTM。
55 4
|
26天前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
34 2
|
1月前
|
机器学习/深度学习 传感器 安全
基于模糊神经网络的移动机器人路径规划matlab仿真
该程序利用模糊神经网络实现移动机器人的路径规划,能在含5至7个静态未知障碍物的环境中随机导航。机器人配备传感器检测前方及其两侧45度方向上的障碍物距离,并根据这些数据调整其速度和方向。MATLAB2022a版本下,通过模糊逻辑处理传感器信息,生成合理的路径,确保机器人安全到达目标位置。以下是该程序在MATLAB2022a下的测试结果展示。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
4天前
|
存储 安全 算法
网络安全与信息安全:漏洞、加密技术及安全意识的重要性
如今的网络环境中,网络安全威胁日益严峻,面对此类问题,除了提升相关硬件的安全性、树立法律法规及行业准则,增强网民的网络安全意识的重要性也逐渐凸显。本文梳理了2000年以来有关网络安全意识的研究,综述范围为中国知网中篇名为“网络安全意识”的期刊、硕博论文、会议论文、报纸。网络安全意识的内涵是在“网络安全”“网络安全风险”等相关概念的发展中逐渐明确并丰富起来的,但到目前为止并未出现清晰的概念界定。此领域内的实证研究主要针对网络安全意识现状与问题,其研究对象主要是青少年。网络安全意识教育方面,很多学者总结了国外的成熟经验,但在具体运用上仍缺乏考虑我国的实际状况。 内容目录: 1 网络安全意识的相关
|
2天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第31天】本文将探讨网络安全和信息安全的重要性,以及如何通过理解和应用相关的技术和策略来保护我们的信息。我们将讨论网络安全漏洞、加密技术以及如何提高安全意识等主题。无论你是IT专业人士,还是对网络安全感兴趣的普通用户,都可以从中获得有用的信息和建议。
10 1
|
2天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第31天】随着互联网的普及,网络安全问题日益突出。本文将探讨网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者了解网络安全的重要性,提高自身的网络安全防护能力。
|
5天前
|
SQL 安全 算法
网络安全与信息安全:漏洞、加密技术与安全意识的交织
【10月更文挑战第28天】在数字时代的浪潮中,网络安全与信息安全成为保护个人隐私和企业资产的重要盾牌。本文将深入探讨网络安全中的常见漏洞,介绍加密技术的基本概念及其在保护数据中的应用,并强调提高安全意识的重要性。通过分析具体案例和提供实用的防护措施,旨在为读者提供一个全面的网络安全知识框架,以应对日益复杂的网络威胁。
22 4

热门文章

最新文章