一张图读懂TuGraph Analytics开源技术架构

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 通过一张图描述清楚TuGraph Analytics的整体架构和关键设计,帮助大家快速了解TuGraph Analytics项目轮廓。

作者:范志东

TuGraph Analytics(内部项目名GeaFlow)是蚂蚁集团开源的分布式实时图计算引擎,即流式图计算。通过SQL+GQL融合分析语言对表模型和图模型进行统一处理,实现了流、批、图一体化计算,并支持了Exactly Once语义、高可用以及一站式图研发平台等生产化能力。

开源项目代码目前托管在GitHub,欢迎业界同仁、大数据/图计算技术爱好者关注我们的项目并参与共建。

项目地址:https://github.com/TuGraph-family/tugraph-analytics

GeaFlow论文【SIGMOD 2023】:GeaFlow: A Graph Extended and Accelerated Dataflow System

概览

本文希望通过一张图描述清楚TuGraph Analytics的整体架构脉络和关键设计思路,以帮助大家快速对TuGraph Analytics项目的轮廓有个整体的认识。闲言少叙,直接上图。

TuGraph Analytics开源技术架构

TuGraph Analytics开源技术架构一共分为五个部分:

  • DSL层:即语言层。TuGraph Analytics设计了SQL+GQL的融合分析语言,支持对表模型和图模型统一处理。
  • Framework层:即框架层。TuGraph Analytics设计了面向Graph和Stream的两套API支持流、批、图融合计算,并实现了基于Cycle的统一分布式调度模型。
  • State层:即存储层。TuGraph Analytics设计了面向Graph和KV的两套API支持表数据和图数据的混合存储,整体采用了Sharing Nothing的设计,并支持将数据持久化到远程存储。
  • Console平台:TuGraph Analytics提供了一站式图研发平台,实现了图数据的建模、加工、分析能力,并提供了图作业的运维管控支持。
  • 执行环境:TuGraph Analytics可以运行在多种异构执行环境,如K8S、Ray以及本地模式。

DSL层

DSL层是一个典型的编译器技术架构,即语法分析、语义分析、中间代码生成(IR)、代码优化、目标代码生成(OBJ)的流程。

DSL层架构

  • 语言设计:TuGraph Analytics设计了SQL+GQL的融合语法,解决了图+表一体化分析的诉求。具体语法设计可以参考文章:DSL语法文档
  • 语法分析:通过扩展Calcite的SqlNode和SqlOperator,实现SQL+GQL的语法解析器,生成统一的语法树信息。
  • 语义分析:通过扩展Calcite的Scope和Namespace,实现自定义Validator,对语法树进行约束语义检查。
  • 中间代码生成:通过扩展Calcite的RelNode,实现图上的Logical RelNode,用于GQL语法的中间表示。
  • 代码优化:优化器实现了大量的优化规则(RBO)用于提升执行性能,未来也会引入CBO。
  • 目标代码生成:代码生成器Converter负责将Logical RelNode转换为Physical RelNode,即目标代码。Physical RelNode可以直接翻译为Graph/Table上的API调用。
  • 自定义函数: TuGraph Analytics提供了大量的内置系统函数,用户也可以根据需要注册自定义函数。
  • 自定义插件: TuGraph Analytics允许用户扩展自己的Connector类型,以支持不同的数据源和数据格式。

Framework层

Framework层设计与Flink/Spark等同类大数据计算引擎有一定的相似性,即提供了类FlumeJava(FlumeJava: Easy, Efficient Data-Parallel Pipelines)的统一高阶API(简称HLA),用户调用高阶API的过程会被转换为逻辑执行计划,逻辑执行计划执行一定的优化(如ChainCombine、UnionPushUp等)后,被转换为物理执行计划,物理执行计划会被调度器分发到分布式Worker上执行,最终Worker会回调用户传递的高阶API函数逻辑,实现整个分布式计算链路的执行。

Framework层架构

  • 高阶API:TuGraph Analytics通过Environment接口适配异构的分布式执行环境(K8S、Ray、Local),使用Pipeline封装了用户的数据处理流程,使用Window抽象统一了流处理(无界Window)和批处理(有界Window)。Graph接口提供了静态图和动态图(流图)上的计算API,如append/snapshot/compute/traversal等,Stream接口提供了统一流批处理API,如map/reduce/join/keyBy等。
  • 逻辑执行计划:逻辑执行计划信息统一封装在PipelineGraph对象内,将高阶API对应的算子(Operator)组织在DAG中,算子一共分为5大类:SourceOperator对应数据源加载、OneInputOperator/TwoInputOperator对应传统的数据处理、IteratorOperator对应静态/动态图计算。DAG中的点(PipelineVertex)记录了算子(Operator)的关键信息,如类型、并发度、算子函数等信息,边(PipelineEdge)则记录了数据shuffle的关键信息,如Partition规则(forward/broadcast/key等)、编解码器等。
  • 物理执行计划:物理执行计划信息统一封装在ExecutionGraph对象内,并支持二级嵌套结构,以尽可能将可以流水线执行的子图(ExecutionVertexGroup)结构统一调度。图中示例的物理执行计划DAG被划分为三部分子图结构分别执行。
  • 调度器:TuGraph Analytics设计了基于Cycle的调度器(CycleScheduler)实现对流、批、图的统一调度,调度过程通过事件驱动模型触发。物理执行计划中的每部分子图都会被转换为一个ExecutionCycle对象,调度器会向Cycle的头结点(Head)发送Event,并接收Cycle尾结点(Tail)的发回的Event,形成一个完整的调度闭环。对于流处理,每一轮Cycle调度会完成一个Window的数据的处理,并会一直不停地执行下去。对于批处理,整个Cycle调度仅执行一轮。对于图处理,每一轮Cycle调度会完成一次图计算迭代。
  • 运行时组件:TuGraph Analytics运行时会拉起Client、Master、Driver、Container组件。当Client提交Pipeline给Driver后,会触发执行计划构建、分配Task(ResourceManagement提供资源)和调度。每个Container内可以运行多个Worker组件,不同Worker组件之间通过Shuffle模块交换数据,所有的Worker都需要定期向Master上报心跳(HeartbeatManagement),并向时序数据库上报运行时指标信息。另外TuGraph Analytics运行时也提供了故障容忍机制(FailOver),以便在异常/中断后能继续执行。

State层

State层设计相比于传统的大数据计算引擎,除了提供面向表数据的KV存储抽象,也支持了面向图数据的Graph存储抽象,以更好地支持面向图模型的IO性能优化。

State层架构

  • State API:提供了面向KV存储API,如get/put/delete等。以及面向图存储的API,如V/E/VE,以及点/边的add/update/delete等。
  • State执行层:通过KeyGroup的设计实现数据的Sharding和扩缩容能力,Accessor提供了面向不同读写策略和数据模型的IO抽象,StateOperator抽象了存储层SPI,如finish(刷盘)、archive(Checkpoint)、compact(压缩)、recover(恢复)等。另外,State提供了多种PushDown优化以加速IO访问效率。通过自定义内存管理和面向属性的二级索引也会提供大量的存储访问优化手段。
  • Store层:TuGraph Analytics支持了多种存储系统类型,并通过StoreContext封装了Schema、序列化器,以及数据版本信息。
  • 持久化层:State的数据支持持久化到远程存储系统,如HDFS、OSS、S3等。

Console平台

Console平台提供了一站式图研发、运维的平台能力,同时为引擎运行时提供元数据(Catalog)服务。

Console平台架构

  • 标准化API:平台提供了标准化的RESTful API和认证机制,同时支持了页面端和应用端的统一API服务能力。
  • 任务研发:平台支持“关系-实体-属性”的图数据建模。基于字段映射配置,可以定义图数据传输任务,包括数据集成(Import)和数据分发(Export)。基于图表模型的图数据加工任务支持多样化的计算场景,如Traversal、Compute、Mining等。基于数据加速器的图数据服务,提供了多协议的实时分析能力,支持BI、可视化分析工具的接入集成。
  • 构建提交:平台通过任务和作业的独立抽象,实现研发态与运维态的分离。任务开发完成后执行发布动作,会自动触发构建流水线(Release Builder),生成发布版本。任务提交器(Task Submitter)负责将发布版本的内容提交到执行环境,生成计算作业。
  • 作业运维:作业属于任务的运行态,平台提供了作业的操纵(启停、重置)、监控(指标、告警、审计)、调优(诊断、伸缩、调参)、调度等运维能力。作业的运行时资源会由资源池统一分配和管理。
  • 元数据服务:平台同时承载了引擎运行时的元数据服务能力,以实现研发与运维的自动化。元数据以实例维度进行隔离,实例内的研发资源可以根据名字直接访问,如点、边、图、表、视图、函数等。
  • 系统管理:平台提供了多租户隔离机制、细粒度用户权限控制,以及系统资源的管理能力。

执行环境

TuGraph Analytics支持多种异构环境执行,以常见的K8S部署环境为例,其物理部署架构如下:

TuGraph Analytics K8S部署架构

在TuGraph Analytics作业的全生命周期过程中,涉及的关键数据流程有:

  • 研发阶段:Console平台提供了实例下所有的研发资源的管理,用户可以在创建任务前,提前准备所需的研发资源信息,并存储在Catalog。
  • 构建阶段:任务创建完成后,通过发布动作触发构建流水线,用户的JAR包、任务的ZIP包等会上传到RemoteFileStore。
  • 提交阶段:作业提交时,Console会根据作业的参数配置、运行时环境信息,以及远程文件地址等创建KubernetesJobClient,既而会拉起Client Pod,Client会拉起Master Pod,Master会拉起Container Pods和Driver Pod。所有的Pod拉起后,Client会把作业的Pipeline发送给Driver执行,Driver最终通过Cycle调度的Events与Containers交互。所有的Pod启动时都会从RemoteFileStore下载版本JAR包、用户JAR包、作业ZIP包等信息。Driver对DSL代码编译时,也需要通过Console提供的Catalog API操作Schema信息。
  • 运行阶段:作业运行时,各个组件会上报不同的数据和信息。Master会上报作业的心跳汇总信息,Driver会上报作业的Pipeline/Cycle指标以及错误信息,Container会上报作业的Offset、指标定义以及错误信息等。RuntimeMetaStore存储作业的Pipeline/Cycle指标、Offset、心跳汇总、错误等信息。HAMetaStore存储各个运行组件的地址信息。DataStore存储State数据和作业FailOver时所需的元数据信息。MetricStore存储运行时指标信息。
  • 监控阶段:Console会主要查询RuntimeMetaStore和MetricStore存储的信息用于作业的运行时监控。
  • 清理阶段:作业重置/删除时,Console会对作业的RuntimeMeta、HAMeta以及部分Data做清理操作。

总结

希望通过以上的介绍,可以让大家对TuGraph Analytics开源技术架构有个比较清晰的了解,我们非常欢迎开源社区的技术爱好者参与到项目的建设中来。

如果您对TuGraph Analytics项目比较感兴趣,欢迎动动手指直达我们的GitHub仓库github.com/TuGraph-family/tugraph-analytics,为我们的项目加一颗Star。【网络不畅可以尝试使用VPN访问】

如果您对该项目的发展有好的建议和意见,欢迎大家提交Issue到开源社区,或者通过邮箱/钉钉群与我们直接联系。

邮箱:tugraph@service.alipay.com

钉钉群:TuGraph Analytics讨论群

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
7月前
|
关系型数据库 分布式数据库 数据库
【PolarDB开源】PolarDB与微服务架构的融合:灵活扩展与高效管理
【5月更文挑战第23天】阿里云PolarDB是适用于微服务的高性能分布式数据库,提供数据分片、水平扩展及高可用性解决方案。通过SQL或API实现弹性扩展,内置故障转移保障服务连续性,且兼容MySQL协议,易于集成微服务生态。通过Spring Boot示例展示了PolarDB的配置与集成过程,强调其在现代云原生应用中的重要角色。
177 1
|
7月前
|
监控 安全 Cloud Native
云原生开源沙龙北京站开启报名 | 微服务安全零信任架构
「微服务安全零信任架构」主题技术沙龙将于4月13日在北京阿里中心举行,欢迎报名!~
云原生开源沙龙北京站开启报名 | 微服务安全零信任架构
|
7月前
|
调度
【嵌入式开源库】timeslice的使用,完全解耦的时间片轮询框架构(二)
【嵌入式开源库】timeslice的使用,完全解耦的时间片轮询框架构
168 0
GitHub开源大厂缓存架构Redis优化的文档被警告,900页全是干货
掌握Redis对Java程序员来说很有必要了。实际上,很少有人真的掌握了Redis的全部技巧,有些甚至连面试题都很难应付。那么,如何全面系统地学习Redis呢?
|
1月前
|
存储 SQL Apache
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
|
2月前
|
分布式计算 大数据 Serverless
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
在2024云栖大会开源大数据专场上,阿里云宣布推出实时计算Flink产品的新一代向量化流计算引擎Flash,该引擎100%兼容Apache Flink标准,性能提升5-10倍,助力企业降本增效。此外,EMR Serverless Spark产品启动商业化,提供全托管Serverless服务,性能提升300%,并支持弹性伸缩与按量付费。七猫免费小说也分享了其在云上数据仓库治理的成功实践。其次 Flink Forward Asia 2024 将于11月在上海举行,欢迎报名参加。
236 6
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
|
1月前
|
编解码 人工智能 开发者
长短大小样样精通!原始分辨率、超长视频输入:更灵活的全开源多模态架构Oryx
【10月更文挑战第23天】Oryx 是一种新型多模态架构,能够灵活处理各种分辨率的图像和视频数据。其核心创新在于能够对图像和视频进行任意分辨率编码,并通过动态压缩器模块提高处理效率。Oryx 在处理长视觉上下文(如视频)时表现出色,同时在图像、视频和3D多模态理解方面也展现了强大能力。该模型的开源性质为多模态研究社区提供了宝贵资源,但同时也面临一些挑战,如选择合适的分辨率和压缩率以及计算资源的需求。
34 3
|
7月前
|
存储 关系型数据库 分布式数据库
【PolarDB开源】深入PolarDB内核:探究存储计算分离架构的设计哲学
【5月更文挑战第20天】PolarDB是阿里巴巴的云原生分布式数据库,以其存储计算分离架构为核心,解决了传统数据库的扩展性和资源灵活性问题。该架构将数据存储和计算处理分开,实现高性能(通过RDMA加速数据传输)、高可用性(多副本冗余保证数据可靠性)和灵活扩展(计算资源独立扩展)。通过动态添加计算节点以应对业务流量变化,PolarDB展示了其在云时代应对复杂业务场景的能力。随着开源项目的进展,PolarDB将持续推动数据库技术发展。
238 6
|
2月前
|
机器学习/深度学习 大数据 PyTorch
行为检测(一):openpose、LSTM、TSN、C3D等架构实现或者开源代码总结
这篇文章总结了包括openpose、LSTM、TSN和C3D在内的几种行为检测架构的实现方法和开源代码资源。
76 0
|
7月前
|
Cloud Native 安全 微服务
云原生开源沙龙北京站火热报名中丨微服务安全零信任架构
云原生开源沙龙北京站火热报名中丨微服务安全零信任架构。
718 22
下一篇
DataWorks