基于CEM算法的三维点云数据二维映射表示matlab仿真

简介: 基于CEM算法的三维点云数据二维映射表示matlab仿真

1.算法理论概述
三维点云数据是一种重要的空间信息表示方式,广泛应用于计算机视觉、机器人、虚拟现实等领域。然而,三维点云数据的特征维度往往很高,难以直接处理和分析。因此,将三维点云数据转换为低维度的二维映射表示,是一种有效的数据降维方法,可以方便地进行数据处理和分析。本文提出了一种基于CEM(conformal energy minimization)算法的三维点云数据二维映射表示方法。

    CEM算法是一种基于进化策略的优化算法,用于求解优化问题。该算法的基本思想是通过模拟进化过程,逐步优化解的质量。CEM算法包括三个主要步骤:初始化、选择和进化。

初始化:通过随机产生一组初始解,构成种群。

选择:根据每个解的适应度值,选择一部分优秀的解作为下一代种群的父代。

进化:通过交叉、变异等操作,产生新的解,并更新种群。
对于一个三维点云数据集$P$,我们可以使用以下公式计算其协方差矩阵$C$:
f867d17926bcf4d668877ae7b3278fcb_82780907_202308172355260928587717_Expires=1692288326&Signature=tRr35CB2lVCNZKwaW7%2B9qZv%2Fv20%3D&domain=8.png

其中,$P$表示三维点云数据集,$W$表示优化后的二维矩阵。

具体理论如下:
a7aa2b8f69debd6212bf209368cb4154_82780907_202308172357090350294226_Expires=1692288429&Signature=ASRmCddpsW09Qwh2J%2FwvJiN2SFw%3D&domain=8.png
f35e08b989e388a89f2a7941df5c9a9a_82780907_202308172357090366398171_Expires=1692288429&Signature=RCGSEj3B1bNolVkoBU%2FwCNpkaiA%3D&domain=8.png

2.算法运行软件版本
matlab2022a

3.算法运行效果图预览
f8803199c8eceb77d43034c9a79c6b50_82780907_202308172358130053297243_Expires=1692288493&Signature=7OmZp%2Bmweyy7d0I8T%2FbgyrZf2hY%3D&domain=8.jpeg
402024918661cf78c0ca2f042649933a_82780907_202308172358130037113026_Expires=1692288493&Signature=miS9fLH5imFLSeE9xqv92sNO2rQ%3D&domain=8.jpeg

4.部分核心程序

```function uv = func_CEM(F,V)
Vno = size(V,1);% 顶点数
[VB, VI] = BoundaryIndex(F);% 获取边界点和内部点的索引

uv = zeros(Vno,2); % 初始化二维坐标
[uv(VB,:), L] = InitialBoundaryMap(F, V);% 获取边界点的初始坐标和离散拉普拉斯算子

tmp = -L(VI,VB)*uv(VB,:);% 计算内部点的一部分坐标
uv(VI,:) = L(VI,VI) \ tmp;% 利用离散拉普拉斯算子求解内部点的坐标

Ec0 = ConformalEnergy(uv, L, VB);% 计算初始状态下的共形能
diff_Ec = 1;% 初始化能量差
uv0 = uv;% 记录初始坐标
iter = 0;% 初始化迭代次数
while iter < 5 && diff_Ec > 1e-6% 进行 CE 迭代
iter
iter = iter+1;
uvI_norm = sum(uv(VI,:).^2, 2);% 计算内部点坐标的模
uvI_inv = uv(VI,:)./repmat(uvI_norm, 1, 2);% 计算内部点坐标的单位向量
rhs = -L(VB,VI)*uvI_inv;% 计算边界点的右端项
uv(VB,:) = L(VB,VB) \ rhs; % 利用离散拉普拉斯算子求解边界点的坐标

mean_uvB = mean(uv(VB,:), 1);% 计算边界点的坐标平均值
uv(VB,1) = uv(VB,1) - mean_uvB(1);% 将边界点坐标沿 x 轴平移
uv(VB,2) = uv(VB,2) - mean_uvB(2);% 将边界点坐标沿 y 轴平移
uv(VB,:) = VertexNormalize(uv(VB,:));% 将边界点坐标归一化

tmp = -L(VI,VB)*uv(VB,:);% 计算内部点的坐标
uv(VI,:) = L(VI,VI) \ tmp;% 利用离散拉普拉斯算子求解内部点的坐标

Ec = ConformalEnergy(uv, L, VB);% 计算每次迭代后的共形能
diff_Ec = Ec0 - Ec;% 计算能量差
if diff_Ec < 0% 如果能量差小于零,恢复到上一次的坐标
    uv = uv0;
else% 否则更新共形能和坐标
    Ec0 = Ec;
    uv0 = uv;
end

end

```

相关文章
|
6天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
3天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
7天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
7天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
7天前
|
算法 数据安全/隐私保护 索引
索引OFDM调制解调系统的matlab性能仿真
本文对m索引OFDM调制解调系统性能进行了仿真分析,增加了仿真图并配有语音讲解视频,使用Matlab2022a完成仿真,代码无水印。研究了OFDM-IM技术,通过激活不同子载波组合传输额外信息,提高频谱效率和降低PAPR。提出了OFDM联合子块索引调制技术(OFDM-JS-IM)和OFDM全索引方法(OFDM-AIM),并通过遗传算法优化子块查找表,有效提升系统性能。提供了核心MATLAB程序示例。
25 3
|
27天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
26天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
5天前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
210 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
134 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现