基于时空RBF神经网络的混沌时间序列预测(Matlab代码实现)

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: 基于时空RBF神经网络的混沌时间序列预测(Matlab代码实现)

💥1 概述

文献来源:


由于动态性质,混沌时间序列很难预测。在传统的信号处理方法中,信号仅在时域或空间域中处理。信号的时空分析通过利用来自时间和空间域的信息,提供了比传统的一维方法更多的优势。在此,我们提出了一种RBF神经网络的时空扩展,用于预测混沌时间序列。该算法利用时空正交性的概念,分别处理混沌级数的时间动力学和空间非线性(复杂度)。探索了所提出的RBF架构,用于麦基-格拉斯时间序列的预测,并将结果与标准RBF进行了对比。结果表明,时空RBF的性能优于标准RBFNN,可显著降低估计误差。


原文摘要:


Abstract:


Due to the dynamic nature, chaotic time series are difficult predict. In conventional signal processing approaches signals are treated either in time or in space domain only. Spatio-temporal analysis of signal provides more advantages over conventional uni-dimensional approaches by harnessing the information from both the temporal and spatial domains. Herein, we propose an spatio-temporal extension of RBF neural networks for the prediction of chaotic time series. The proposed algorithm utilizes the concept of time-space orthogonality and separately deals with the temporal dynamics and spatial non-linearity(complexity) of the chaotic series. The proposed RBF architecture is explored for the prediction of Mackey-Glass time series and results are compared with the standard RBF. The spatio-temporal RBF is shown to out perform the standard RBFNN by achieving significantly reduced estimation error.


📚2 运行结果

部分代码:

% Input and output signals (test phase)
figure
plot(ST_RBF.indts,ST_RBF.f_test,'k','linewidth',ST_RBF.lw);
hold on;
plot(RBF.indts,RBF.y_test,'.:b','linewidth',RBF.lw);
plot(ST_RBF.indts,ST_RBF.y_test,'--r','linewidth',ST_RBF.lw);
xlim([ST_RBF.start_of_series_ts+ST_RBF.time_steps ST_RBF.end_of_series_ts]);
h=legend('Actual Value (Testing)','RBF Predicted (Testing)','ST-RBF Predicted (Testing)','Location','Best');
grid minor
xlabel('Sample #','FontSize',ST_RBF.fsize);
ylabel('Magnitude','FontSize',ST_RBF.fsize);
set(h,'FontSize',12)
set(gca,'FontSize',13)
saveas(gcf,strcat('Time_SeriesTesting.png'),'png')
% Objective function (MSE) (training phase)
figure
plot(RBF.start_of_series_tr:RBF.end_of_series_tr-1,10*log10(RBF.I(1:RBF.end_of_series_tr-RBF.start_of_series_tr)),'+-b','linewidth',RBF.lw)
hold on
plot(ST_RBF.start_of_series_tr:ST_RBF.end_of_series_tr-1,10*log10(ST_RBF.I(1:ST_RBF.end_of_series_tr-ST_RBF.start_of_series_tr)),'+-r','linewidth',ST_RBF.lw)
h=legend('RBF (Training)','ST-RBF (Training)','Location','North');
grid minor
xlabel('Sample #','FontSize',ST_RBF.fsize);
ylabel('MSE (dB)','FontSize',ST_RBF.fsize);
set(h,'FontSize',12)
set(gca,'FontSize',13)
saveas(gcf,strcat('Time_SeriesTrainingMSE.png'),'png')
% Objective function (MSE) (test phase)
figure
plot(RBF.start_of_series_ts+RBF.time_steps:RBF.end_of_series_ts,10*log10(RBF.I(RBF.end_of_series_tr-RBF.start_of_series_tr+1:end)),'.:b','linewidth',RBF.lw+1)
hold on
plot(ST_RBF.start_of_series_ts+ST_RBF.time_steps:ST_RBF.end_of_series_ts,10*log10(ST_RBF.I(ST_RBF.end_of_series_tr-ST_RBF.start_of_series_tr+1:end)),'.:r','linewidth',ST_RBF.lw+1)
h=legend('RBF (Testing)','ST-RBF (Testing)','Location','South');
grid minor
xlabel('Sample #','FontSize',ST_RBF.fsize);
ylabel('MSE (dB)','FontSize',ST_RBF.fsize);
set(h,'FontSize',12)
set(gca,'FontSize',13)
saveas(gcf,strcat('Time_SeriesTestingMSE.png'),'png')

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

Khan, Shujaat, et al. “A Fractional Gradient Descent-Based RBF Neural Network.” Circuits, Systems, and Signal Processing, vol. 37, no. 12, Springer Nature America, Inc, May 2018, pp. 5311–32, doi:10.1007/s00034-018-0835-3.


Khan, Shujaat, et al. “A Novel Adaptive Kernel for the RBF Neural Networks.” Circuits, Systems, and Signal Processing, vol. 36, no. 4, Springer Nature, July 2016, pp. 1639–53, doi:10.1007/s00034-016-0375-7.


🌈4 Matlab代码实现

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
1月前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
222 2
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
5月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM
这是一个基于MATLAB2022A的金融数据预测仿真项目,采用GUI界面,比较了CNN、BP、RBF和LSTM四种模型。CNN和LSTM作为深度学习技术,擅长序列数据预测,其中LSTM能有效处理长序列。BP网络通过多层非线性变换处理非线性关系,而RBF网络利用径向基函数进行函数拟合和分类。项目展示了不同模型在金融预测领域的应用和优势。
|
6月前
|
机器学习/深度学习 并行计算 测试技术
BiTCN:基于卷积网络的多元时间序列预测
该文探讨了时间序列预测中模型架构的选择,指出尽管MLP和Transformer模型常见,但CNN在预测领域的应用较少。BiTCN是一种利用两个时间卷积网络来编码历史和未来协变量的模型,提出于《Parameter-efficient deep probabilistic forecasting》(2023年3月)。它包含多个由扩张卷积、GELU激活函数、dropout和全连接层组成的临时块,有效地处理序列数据。实验表明,BiTCN在具有外生特征的预测任务中表现优于N-HiTS和PatchTST。BiTCN的效率和性能展示了CNN在时间序列预测中的潜力。
260 1
|
6月前
|
机器学习/深度学习 存储 算法
基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络
该文介绍了使用MATLAB2022A进行时间序列预测的算法,结合CNN和RNN(LSTM或GRU)处理数据。CNN提取局部特征,RNN处理序列依赖。LSTM通过门控机制擅长长序列,GRU则更为简洁、高效。程序展示了训练损失、精度随epoch变化的曲线,并对训练及测试数据进行预测,评估预测误差。
|
6月前
|
机器学习/深度学习 数据挖掘 计算机视觉
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告