【数据挖掘torch】 基于LSTM电力系统负荷预测分析(Python代码实现)

简介: 【数据挖掘torch】 基于LSTM电力系统负荷预测分析(Python代码实现)

💥1 概述

电力系统负荷(电力需求量,即有功功率)预测是指充分考虑历史的系统负荷、经济 状况、气象条件和社会事件等因素的影响,对未来一段时间的系统负荷做出预测。负荷预测是电力系统规划与调度的一项重要内容。短期(两周以内)预测是电网内部机组启停、调度和运营计划制定的基础;中期(未来数月)预测可为保障企业生产和社会生活用电,合理安排电网的运营与检修决策提供支持;长期(未来数年)预测可为电网改造、扩建等计划的制定提供参考,以提高电力系统的经济效益和社会效益。复杂多变的气象条件和社会事件等不确定因素都会对电力系统负荷造成一定的影响,使得传统负荷预测模型的应用存在一定的局限性。同时,随着电力系统负荷结构的多元化,也使得模型应用的效果有所降低,因此电力系统负荷预测问题亟待进一步研究。


1.1 地区负荷的中短期预测分析

根据附件中提供的某地区电网间隔 15 分钟的负荷数据,建立中短期负荷预测模型:


(1)给出该地区电网未来 10 天间隔 15 分钟的负荷预测结果,并分析其预测精度;


(2)给出该地区电网未来 3 个月日负荷的最大值和最小值预测结果,以及相应达到负荷最大值和最小值的时间,并分析其预测精度。


1.2 行业负荷的中期预测分析

对不同行业的用电负荷进行中期预测分析,能够为电网运营与调度决策提供重要依据。特别是在新冠疫情、国家“双碳”目标等背景下,通过对大工业、非普工业、普通工业和商业等行业的用电负荷进行预测,有助于掌握各行业的生产和经营状况、复工复产和后续发展走势,进而指导和辅助行业的发展决策。请根据附件中提供的各行业每天用电负荷相关数据,建立数学模型研究下面问题:


(1)挖掘分析各行业用电负荷突变的时间、量级和可能的原因。


(2)给出该地区各行业未来 3 个月日负荷最大值和最小值的预测结果,并对其预测精度做出分析。


(3)根据各行业的实际情况,研究国家“双碳”目标对各行业未来用电负荷可能产生


的影响,并对相关行业提出有针对性的建议。


📚2 运行结果

部分代码:

model = model.eval() # 转换成测试模式
# data_X = data_X.reshape(-1, 1, 2)
# data_X = torch.from_numpy(data_X)
var_test_x = Variable(test_x). cpu()
pred_test_y = model(var_test_x) # 测试集的预测结果
# 改变输出的格式
# pred_test = pred_test.view(-1).data.numpy()
pred_test_Y = pred_test_y.view(-1).data.cpu().numpy().reshape(-1,480,1)
# 取最后一段5天预测的结果和实际对比,画出测试集中实际结果和预测的结果
pred_last_test_Y=pred_test_Y[-1]
last_test_Y=test_Y[-1]
plt.plot(pred_last_test_Y, 'r', label='prediction')
plt.plot(last_test_Y, 'b', label='real')
plt.legend(loc='best')
plt.show()
# 分析一下误差
# 均方误差
MSE = np.linalg.norm(last_test_Y-pred_last_test_Y, ord=2)**2/len(last_test_Y)
# 平均绝对误差
MAE = np.linalg.norm(last_test_Y-pred_last_test_Y, ord=1)/len(last_test_Y)
# 平均绝对百分比误差
MAPE = np.mean(np.abs((last_test_Y-pred_last_test_Y) / last_test_Y)) * 100
# 模型的准确率

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]杨扬,李炜.基于LSTM的油田电力负荷预测研究[J].电子设计工程,2023,31(12):109-114.DOI:10.14022/j.issn1674-6236.2023.12.023.


[2]吴岳鹏.基于LSTM模型的电力负荷预测[J].自动化应用,2023,64(10):76-78.


[3]何宏宇,龚泽玮,李诗颖等.基于AM-LSTM模型的电力系统短期负荷预测[J].自动化与仪器仪表,2023(02):61-65.DOI:10.14016/j.cnki.1001-9227.2023.02.061.


🌈4 Python代码实现

相关文章
|
28天前
|
数据采集 数据可视化 索引
【python】python股票量化交易策略分析可视化(源码+数据集+论文)【独一无二】
【python】python股票量化交易策略分析可视化(源码+数据集+论文)【独一无二】
|
22天前
|
机器学习/深度学习 数据采集 数据可视化
使用Python实现深度学习模型:智能舆情监测与分析
【8月更文挑战第16天】 使用Python实现深度学习模型:智能舆情监测与分析
61 1
|
26天前
|
存储 JSON 数据可视化
用Python分析S11决赛EDGvsDK,教你怎么硬核吹EDG
用Python分析S11决赛EDGvsDK,教你怎么硬核吹EDG
32 4
用Python分析S11决赛EDGvsDK,教你怎么硬核吹EDG
|
29天前
|
算法 搜索推荐 数据挖掘
【2024年华数杯全国大学生数学建模竞赛】C题:老外游中国 问题思路分析及Python代码实现
本文提供了2024年华数杯全国大学生数学建模竞赛C题“老外游中国”的解题思路分析和Python代码实现,涉及景点评分统计、城市综合评价、游玩路线规划以及特定条件下的旅游优化问题。
432 6
【2024年华数杯全国大学生数学建模竞赛】C题:老外游中国 问题思路分析及Python代码实现
|
9天前
|
Python
Python变量的作用域_参数类型_传递过程内存分析
理解Python中的变量作用域、参数类型和参数传递过程,对于编写高效和健壮的代码至关重要。正确的应用这些概念,有助于避免程序中的错误和内存泄漏。通过实践和经验积累,可以更好地理解Python的内存模型,并编写出更优质的代码。
9 2
|
9天前
|
大数据 机器人 数据挖掘
这个云ETL工具配合Python轻松实现大数据集分析,附案例
这个云ETL工具配合Python轻松实现大数据集分析,附案例
|
9天前
|
存储 数据可视化 Python
使用python moviepy提取视频中的音频,同时对音频数据进行数据可视化分析
使用python moviepy提取视频中的音频,同时对音频数据进行数据可视化分析
9 0
|
25天前
|
编解码 算法 Linux
Linux平台下RTSP|RTMP播放器如何跟python交互投递RGB数据供视觉算法分析
在对接Linux平台的RTSP播放模块时,需将播放数据同时提供给Python进行视觉算法分析。技术实现上,可在播放时通过回调函数获取视频帧数据,并以RGB32格式输出。利用`SetVideoFrameCallBackV2`接口设定缩放后的视频帧回调,以满足算法所需的分辨率。回调函数中,每收到一帧数据即保存为bitmap文件。Python端只需读取指定文件夹中的bitmap文件,即可进行视频数据的分析处理。此方案简单有效,但应注意控制输出的bitmap文件数量以避免内存占用过高。
|
28天前
|
存储 供应链 数据可视化
【python】python 大型商超会员数据研究分析可视化 (源码+数据集+论文)【独一无二】
【python】python 大型商超会员数据研究分析可视化 (源码+数据集+论文)【独一无二】
|
27天前
|
数据采集 数据可视化 Python
【python】python猫眼电影数据抓取分析可视化(源码+数据集+论文)【独一无二】
【python】python猫眼电影数据抓取分析可视化(源码+数据集+论文)【独一无二】

热门文章

最新文章

下一篇
DDNS