【数据挖掘torch】 基于LSTM电力系统负荷预测分析(Python代码实现)

简介: 【数据挖掘torch】 基于LSTM电力系统负荷预测分析(Python代码实现)

💥1 概述

电力系统负荷(电力需求量,即有功功率)预测是指充分考虑历史的系统负荷、经济 状况、气象条件和社会事件等因素的影响,对未来一段时间的系统负荷做出预测。负荷预测是电力系统规划与调度的一项重要内容。短期(两周以内)预测是电网内部机组启停、调度和运营计划制定的基础;中期(未来数月)预测可为保障企业生产和社会生活用电,合理安排电网的运营与检修决策提供支持;长期(未来数年)预测可为电网改造、扩建等计划的制定提供参考,以提高电力系统的经济效益和社会效益。复杂多变的气象条件和社会事件等不确定因素都会对电力系统负荷造成一定的影响,使得传统负荷预测模型的应用存在一定的局限性。同时,随着电力系统负荷结构的多元化,也使得模型应用的效果有所降低,因此电力系统负荷预测问题亟待进一步研究。


1.1 地区负荷的中短期预测分析

根据附件中提供的某地区电网间隔 15 分钟的负荷数据,建立中短期负荷预测模型:


(1)给出该地区电网未来 10 天间隔 15 分钟的负荷预测结果,并分析其预测精度;


(2)给出该地区电网未来 3 个月日负荷的最大值和最小值预测结果,以及相应达到负荷最大值和最小值的时间,并分析其预测精度。


1.2 行业负荷的中期预测分析

对不同行业的用电负荷进行中期预测分析,能够为电网运营与调度决策提供重要依据。特别是在新冠疫情、国家“双碳”目标等背景下,通过对大工业、非普工业、普通工业和商业等行业的用电负荷进行预测,有助于掌握各行业的生产和经营状况、复工复产和后续发展走势,进而指导和辅助行业的发展决策。请根据附件中提供的各行业每天用电负荷相关数据,建立数学模型研究下面问题:


(1)挖掘分析各行业用电负荷突变的时间、量级和可能的原因。


(2)给出该地区各行业未来 3 个月日负荷最大值和最小值的预测结果,并对其预测精度做出分析。


(3)根据各行业的实际情况,研究国家“双碳”目标对各行业未来用电负荷可能产生


的影响,并对相关行业提出有针对性的建议。


📚2 运行结果

部分代码:

model = model.eval() # 转换成测试模式
# data_X = data_X.reshape(-1, 1, 2)
# data_X = torch.from_numpy(data_X)
var_test_x = Variable(test_x). cpu()
pred_test_y = model(var_test_x) # 测试集的预测结果
# 改变输出的格式
# pred_test = pred_test.view(-1).data.numpy()
pred_test_Y = pred_test_y.view(-1).data.cpu().numpy().reshape(-1,480,1)
# 取最后一段5天预测的结果和实际对比,画出测试集中实际结果和预测的结果
pred_last_test_Y=pred_test_Y[-1]
last_test_Y=test_Y[-1]
plt.plot(pred_last_test_Y, 'r', label='prediction')
plt.plot(last_test_Y, 'b', label='real')
plt.legend(loc='best')
plt.show()
# 分析一下误差
# 均方误差
MSE = np.linalg.norm(last_test_Y-pred_last_test_Y, ord=2)**2/len(last_test_Y)
# 平均绝对误差
MAE = np.linalg.norm(last_test_Y-pred_last_test_Y, ord=1)/len(last_test_Y)
# 平均绝对百分比误差
MAPE = np.mean(np.abs((last_test_Y-pred_last_test_Y) / last_test_Y)) * 100
# 模型的准确率

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]杨扬,李炜.基于LSTM的油田电力负荷预测研究[J].电子设计工程,2023,31(12):109-114.DOI:10.14022/j.issn1674-6236.2023.12.023.


[2]吴岳鹏.基于LSTM模型的电力负荷预测[J].自动化应用,2023,64(10):76-78.


[3]何宏宇,龚泽玮,李诗颖等.基于AM-LSTM模型的电力系统短期负荷预测[J].自动化与仪器仪表,2023(02):61-65.DOI:10.14016/j.cnki.1001-9227.2023.02.061.


🌈4 Python代码实现

相关文章
|
3月前
|
自然语言处理 算法 数据挖掘
【数据挖掘】十大算法之PageRank连接分析算法
文章介绍了PageRank算法的基本概念和数学模型,包括如何通过一阶马尔科夫链定义随机游走模型以及如何计算网页的重要性评分,并提供了PageRank迭代算法的具体步骤。
71 0
|
1月前
|
机器学习/深度学习 大数据 PyTorch
行为检测(一):openpose、LSTM、TSN、C3D等架构实现或者开源代码总结
这篇文章总结了包括openpose、LSTM、TSN和C3D在内的几种行为检测架构的实现方法和开源代码资源。
42 0
|
3月前
|
自然语言处理 数据可视化 安全
【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题一方案及Python实现
第十届“泰迪杯”数据挖掘挑战赛C题的解决方案,涉及疫情背景下周边游需求图谱分析,包括微信公众号文章分类、周边游产品热度分析、本地旅游图谱构建与分析,以及疫情前后旅游产品需求变化分析的Python实现方法。
118 1
【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题一方案及Python实现
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
【优秀python系统毕设】基于Python flask的气象数据可视化系统设计与实现,有LSTM算法预测气温
本文介绍了一个基于Python Flask框架开发的气象数据可视化系统,该系统集成了数据获取、处理、存储、LSTM算法气温预测以及多种数据可视化功能,旨在提高气象数据的利用价值并推动气象领域的发展。
151 1
|
3月前
|
数据采集 自然语言处理 数据可视化
基于Python的社交媒体评论数据挖掘,使用LDA主题分析、文本聚类算法、情感分析实现
本文介绍了基于Python的社交媒体评论数据挖掘方法,使用LDA主题分析、文本聚类算法和情感分析技术,对数据进行深入分析和可视化,以揭示文本数据中的潜在主题、模式和情感倾向。
157 0
|
3月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
本文总结了2023年第十一届泰迪杯数据挖掘挑战赛A题的新冠疫情防控数据分析,提供了32页和40页的论文以及实现代码,涉及密接者追踪、疫苗接种影响分析、重点场所管控以及疫情趋势研判等多个方面,运用了机器学习算法和SEIR传染病模型等方法。
58 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
|
3月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛A题的解题思路和Python代码实现,涵盖了新冠疫情防控数据的分析、建模方案以及数据治理的具体工作。
74 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
|
3月前
|
存储 数据可视化 数据挖掘
【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题三方案及Python实现
第十届“泰迪杯”数据挖掘挑战赛C题的解决方案,专注于问题三“本地旅游图谱构建与分析”,介绍了基于OTA和UGC数据的旅游产品关联分析方法,使用支持度、置信度、提升度来计算关联度得分,并进行了结果可视化,同时指出了方案的改进方向。
67 1
|
3月前
|
存储 自然语言处理 算法
【第十届“泰迪杯”数据挖掘挑战赛】C题:疫情背景下的周边游需求图谱分析 问题二方案及Python实现
第十届“泰迪杯”数据挖掘挑战赛C题的解决方案,专注于疫情背景下的周边游需求图谱分析,具体针对问题二“周边游产品热度分析”,介绍了从OTA和UGC数据中提取旅游产品、计算产品热度得分、判断产品类型的方法,并给出了Python实现步骤和代码。
78 1
|
3月前
|
机器学习/深度学习 数据采集 存储
基于Python+flask+echarts的气象数据采集与分析系统,可实现lstm算法进行预测
本文介绍了一个基于Python、Flask和Echarts的气象数据采集与分析系统,该系统集成了LSTM算法进行数据预测,并提供了实时数据监测、历史数据查询、数据可视化以及用户权限管理等功能。

热门文章

最新文章